Cover photo: Young *Hapalemur simus* living today in the eastern rain forest (photo by Mitch Irwin).

LEMUR NEWS

The Newsletter of the Madagascar Section of the IUCN/SSC Primate Specialist Group

E-mail address for submission of manuscripts: lemurnews@ganzhorn-hh.de

PSG Chairman: Russel A. Mittermeier
PSG Deputy Chairman: William R. Konstant
Editors
Jörg U. Ganzhorn
Ken Glander
Berthe Rakotosamimanana
Michael Schwibbe
Assistant Editors
Anja Ganzhorn
Brigitte M. Raharivololona
Tovo M. Rasolofoharivelo
Layout
Heike Klensang

Addresses for contributions
Jörg U. Ganzhorn
Abt. Tierökologie und Naturschutz
Universität Hamburg
Martin-Luther-King-Platz 3
D-20146 Hamburg
Germany
Fax: +49 40 42838 5980
E-mail: ganzhorn@zoologie.uni-hamburg.de

Berthe Rakotosamimanana
GERP
34, Cité des Professeurs
Antananarivo (101)
Madagascar
E-mail: gerp@dts.mg

Number of copies: 1200

ISSN 0343-3528

Lemur News online
Volumes 3-present are available online at www.dpz.gwdg.de
The last year has been a cornerstone in the history of Madagascar’s conservation politics. The announcement of President Marc Ravalomanana at the World Parks Congress to triple the size of Madagascar’s protected areas made the world news. Subsequently the World Bank released money to expand protected areas, establish conservation sites in forests and transfer forest management responsibilities to local communities.

While conservation politics make huge progress, data from the field are no less exciting. Two studies report new sites for *Hapalemur simus* near Andasibe/Perinet (see the contributions by Rakotosamimanana and collaborators and Dolch and collaborators). These discoveries made me reconsider an earlier report of the presence of *Hapalemur simus* in Zahamena in 1995. By then, the report was questioned and eventually withdrawn. Once again, the new discoveries have demonstrated that we still know little even about Madagascar’s best known and most studied group of vertebrates. It is certainly worth surveying any site in Madagascar without preconceptions. We are looking forward to more exciting news for the jubilee edition, Number 10.

Finally, we have another novelty: the present volume of *Lemur News* is the first where we have more Malagasy than foreign authors in total and as first authors. This is a very fine demonstration of the capacity of the new generation of biologists and conservationists in Madagascar.

Just a reminder for our contributors (since nobody reads the Instructions for Contributors anyhow): PLEASE follow the Instructions for Contributors. In particular: do not integrate any artwork or scanned photos into the textfile. The figures lose quality every time they are transformed. Also if the lettering can not be read in the original figures you should not be too surprised if it can not be read in the published manuscript either.

Jörg U. Ganzhorn

NEWS and ANNOUNCEMENTS

President Marc Ravalomanana to triple the size of Madagascar's network of protected areas

News from the World Parks Congress:
In an effort to safeguard tens of thousands animal and plant species found nowhere else in the world, the government of Madagascar announced that it will more than triple the size of its network of areas under protection from 1.7 million hectares to 6 million hectares over the next five years. Under the plan, the government will expand its terrestrial coverage from 1.5 million hectares to 5 million hectares and its coastal and marine-area coverage from 200,000 hectares to 1 million hectares. Madagascar’s President Marc Ravalomanana made the announcement before thousands of delegates at the 5th World Parks Congress in Durban, South Africa. Deforestation has taken its toll on the island, reducing the country’s forest from 20 million hectares to 9 million hectares over the last 20 years. “We can no longer afford to sit back and watch our forests go up in flames,” President Ravalomanana said. “This is not just Madagascar’s biodiversity, it is the world’s biodiversity. We have the firm political will to stop this degradation.”

The world’s fourth largest island, Madagascar has only been inhabited for about 2,000 years. As a result, its plant and animal life developed in pristine isolation and it now teems with species found nowhere else. It is home to some 10,000 endemic plant species, 316 endemic reptile species and 109 endemic bird species. It is also home to about 70 primate taxa found only there, making it the world’s top priority for primate conservation.

The Wildlife Conservation Society (WCS), Conservation International (CI) and WWF are among the international and national organizations supporting the government in this effort. The new protected areas are part of Madagascar’s long-term commitment to preserve the remaining 10 to 20 percent of its primary forest and encourage local communities to engage in sustainable land use. Through sustainable conservation and plans to turn the country into a regional leader in ecotourism, the government hopes to meet its goal of reducing poverty by 50 percent over the next 12 years.

“This commitment recognizes the importance of parks as a way to both protect biodiversity and to promote sustainability and national development in the rural landscape,” said Dr. John G. Robinson, senior vice president of WCS’s International Conservation programs. “Madagascar is clearly leading the way towards this vision by promoting long-term partnerships with all sectors of civil society.”

“This is one of the most important announcements in the history of biodiversity conservation,” said CI President Russell Mittermeier. “Madagascar is one of the world’s highest priority hotspots and a leading megadiversity country, with levels of endemism unlike anywhere on Earth. President Ravalomanana’s commitment to more than triple the area under conservation was unimaginable a few years ago and needs the fullest possible international recognition and support.” Under the plan, the government will launch a consultative, science-based process to choose the best sites for new protected areas based on the need to protect large wild places and the identification of threatened species that are currently outside the protected area network, called “gap species”. The government also wants to create wildlife corridors that connect existing parks, preserve rare habitats and protect watersheds. “This historic decision is a gift to the Earth that clearly signals Madagascar’s commitment to saving its unique and spectacular wildlife and habitats,” said Dr. Claude Martin, WWF Director General. “President Ravalomanana should be applauded and recognized as a global leader in nature conservation.” Currently, Madagascar’s 1.7 million hectares of conservation areas cover about 3% of the country’s surface. These new areas will put the government on track to safeguard 10% of its territory over the next five years.

World Bank Gives Madagascar Record Environment Grant

NAIROBI (Reuters) - The World Bank (news - web sites) has approved its largest environment grant to help the Indian Ocean island of Madagascar protect its unique environment and native species, the bank said on Wednesday. Madagascar, the world’s fourth largest island, has a unique array of wildlife, flora and fauna but the impoverished country has few funds available to address conservation concerns. The grant of $49 million will be used to expand protected areas, establish conservation sites in forests and transfer forest management responsibilities to local communities.

The Primate Action Fund (PAF) contributes to global biodiversity conservation by providing strategically targeted, catalytic support for the conservation of endangered nonhuman primates and their natural habitats. In June 2003, William R. Konstant transferred the management of the Primate Action Fund to Anthony Rylands, Senior Director at the Center for Applied Biodiversity Science at Conservation International. Ella Outlaw, Executive Assistant to Russell A. Mittermeier, is responsible for drawing up grant agreements, disbursement of funds and the financial accounting.

Thirty-three projects were supported during the period March 2003 – March 2004. Eleven were distribution surveys and population estimates, key aspects for the evaluation of conservation status, and in some cases resulting in taxonomic rearrangements and even the discovery of new species. A further nine projects involved studies emphasizing the ecology and behavioural ecology of primate groups. Other topics included environmental education, conservation workshops, research on specific conservation problems, genetics and the Neotropical database of primate localities. The average grant was $3630 (the maximum award is $5000). We were disappointed in the small number of proposals submitted for lemur conservation - only two awards were made in 2003. We hope that we can increase this number considerably in the next 2004-2005 cycle of grants.

- A conservation genetics survey of wild lemurs in and around Ranomafana National Park, Madagascar – Toni Lynn Morelli, State University of New York at Stony Brook, NY, USA.
- Capture and recapture of Propithecus sp. in Tsinjoarivo, Madagascar - Kenneth Glander, Duke University, Durham, North Carolina.

 Having been directly involved in this fund for the first time over this year, I have been able to witness at first hand its immense usefulness and the enormous benefits it has in terms of primate conservation and research. Besides their direct impact on conservation and our understanding of conservation issues, small grants such as these enable the maintenance, and I would say the growth, of a conservation competence in the habitat countries, both in terms of expertise as well as active personnel – students, technicians, researchers and administrators. The conservation benefits of these small grants are considerable – in many countries the money goes a very long way – and way beyond the results seen in the final report in terms of their catalytic effect and the seed effect on the development of larger and more long-term conservation efforts.

The Margot Marsh Biodiversity Foundation has awarded a further grant to Conservation International for a new cycle of Primate Action Fund grants: March 2004 – March 2005. Funding will be available as from June 2004. For application guidelines, please write to Anthony B. Rylands (address below).

Projects submitted to the foundation are considered if they have one or more of the following characteristics:
- a focus on critically endangered and endangered nonhuman primates living in their natural habitats;
- location in areas of high overall biodiversity and under great threat (for example, biodiversity hotspots, mega-diversity countries) - to ensure maximum multiplier effect for each project;
- direction and management by nationals from the tropical countries, to help increase local capacity for implementing biodiversity conservation;
- the ability to strengthen international networks of field-based primate specialists and enhance their capacity to be successful conservationists; and
- projects that result in publication of information on endangered primate species in a format that is useful both to experts and the general public.

Projects should contribute to at least one, and preferably more, of the following themes:
- Enhancement of scientific understanding/knowledge of the target species/ecosystem;
- improved protection of a key species, habitat, or reserved area;
- demonstration of economic benefit achieved through conservation of a species and its habitat, as compared to loss thereof;
- increased public awareness or educational impact resulting from the project in question;
- improved local capacity to carry out future conservation efforts through training or practical experience obtained through project participation; and
- modification of inappropriate policies or legislation that previously led t species or habitat decline.

IPS Conservation Fund

The IPS Conservation Committee has recently awarded over $6300 in Conservation Small Grants. Seven applications were received from primatologists studying in all of the continents in which primates naturally occur, and four awards were made. The following individuals received grants for their excellent projects: Dilip Chetry (India) for a project titled "Non-human primate survey in Nongkhyлем Wildlife Sanctuary, Meghalaya, India". Entang Iskandar (Indonesia) for a project titled "Population survey of the Javan gibbon (Hylobates moloch) at the Gunung Halimun National Park, West Java, Indonesia". Pierre Kakule (Congол) for a project titled "Environmental education for the conservation of primates at the Tayna Centre for Conservation Biology". Karenina Morales (El Salvador) for a project titled "Survey and census of spider monkeys in El Salvador". Congratulations to Dilip, Entang, Pierre, and Karenina for their outstanding proposals and good luck with the projects. These grants were made possible by generous contributions to the IPS Conservation Fund from many IPS members.

We are planning on awarding another set of grants within the next year, so keep your eyes open for the announcement and keep those contributions coming. You can make a contribution to the IPS Conservation Fund (or General Fund) at any time at the IPS website: http://www.asp.org/IPS/MembersOnly/selectloginoptions.

Claudio Padua, IPS VP for Conservation
Lawrence Jacobsen Education Development Award

In honor of Larry Jacobsen’s commitment to providing resources, expertise, and guidance to the numerous students and researchers in the field of primatology, the Education Committee of the International Primatological Society is pleased to announce that the education award will now carry his name to recognize his outstanding contributions to the field of education and career development. The Lawrence Jacobsen Education Development Award supports the initiation and long-term support of primate conservation education programs. This education award supports field conservation programs, work with local community and/or schools, or provides training in conservation education techniques. I am pleased to announce that the first recipient of this award is Dr. Gigi Joseph, Extension Education Officer of the Periyar Tiger Reserve in Kerala, India. His program entitled “Education and awareness programs to conserve lion-tailed macaques (Macaca silenus) in Periyar Tiger Reserve, Kerala, India” was awarded $1000 to support teacher and student training workshops on the conservation needs of the lion-tailed macaque.

Anne Savage, Vice-President for Education, International Primatological Society, Disney’s Animal Kingdom, Conservation Station Administration, P. O. Box 10,000, Lake Buena Vista, FL 32830, USA.

Galante Award 2003

It is our pleasure to announce that the IPS Conservation Committee has decided that the winner of the 2003 Martha J. Galante Award is Mr. Ernest ike Nwufoh from Nigeria.

Claudio V. Padua, PhD, IPE - Instituto de Pesquisas Ecológicas e VP for Conservation

Madagascar designates its third Ramsar site

The Ramsar Bureau is very pleased to announce that Madagascar, which joined the Convention in 1998, has named its third Wetland of International Importance, as of 9 September 2003. "Le Lac Alaotra: les zones humides et bassins versants" (722,500 hectares, 17°28’S 048°31’E) in Ambatondrazaka prefecture comprises a large lake of some 20,000 hectares, surrounded by 23,500 ha of marsh and 117,000 ha of rice plantations, and including over 500,000 ha of the surrounding catchment and water courses, between 750 and 1250 m altitude. The site is an excellent representative example of the natural wetlands of the eastern Madagascar biogeographical region and includes nine of twenty inland wetland types identified in the Ramsar system of classification, as well as seven of the 10 human-made wetland types. The site provides habitat for three endemic species, all of which are seriously threatened – the grey lemur Hapalemur griseus alaotrensis, the Alaotra grebe Tachybaptus rufola-vatu, and the Madagascar pochard Aythya innolata – as well as for five very rare, indigenous species of fish and some 30 species of waterbirds. The wetlands surrounding the lake have religious significance. The rice plantations, the premier rice-producing area in the country, are under a cooperative water-management association of rice-producers and other users. The introduction of alien fish species, and to some extent alien plant species as well, are seen to be a potential threat for the future.

The Durrell Wildlife Conservation Trust, in collaboration with the Government and with funding from the UK, has maintained since 1996 an education and public awareness programme in the villages and schools around the lake, focusing on the values and functions of the lake ecosystem and especially of the marshes. Both Durrell Wildlife and WWF’s Living Water Programme have been instrumental in assisting the Ministry of Environment, Water, and Forests in preparing the designation of this site for the Ramsar List. Madagascar has also submitted designation documents for two additional sites (Parc de TsarArsotra and Les Marais de Torotorofoty), presently being evaluated and processed by Bureau staff, as further progress in a WWF Living Waters-funded project to assist Madagascar in the development of a National Wetland Policy and designation of further Ramsar sites.

Dwight Peck, Executive Assistant for Communications

Guidelines for Application of IUCN Red List Criteria at Regional Levels

During the First World Conservation Congress held in Montreal in 1996, IUCN adopted a resolution requesting the Species Survival Commission (SSC) to develop guidelines for using the IUCN Red List Categories and Criteria at the regional level. Development of the guidelines has involved a broad consultation with people with technical experience in the development of IUCN Red List Criteria and those with practical experience in producing Red Lists at regional levels. During this process, draft versions of the guidelines were published in Species (Gärdenfors et al., 1999) and in Conservation Biology (Gärdenfors et al. 2001; see also Gärdenfors 2001), and comments received on these drafts were used to improve and refine the guidelines. The Guidelines for Application of IUCN Red List Criteria at Regional Levels: Version 3.0 have been published as a booklet in three languages: English, French and Spanish. They are recommended for anyone who wishes to use the IUCN Red List Categories and Criteria to undertake Red List assessments at the regional level. They are now available on the SSC website as PDF files, in the three languages, at: http://www.iucn.org/themes/ssc/redlists/regionalguidelines.htm.

Craig Hilton-Taylor, Red List Programme Officer, Species Survival Programme, 218c Huntingdon Road, Cambridge CB3 0DL, UK, redlist@ssc.uk.org.

Become a Member of the International Primatological Society

To become a member of the International Primatological Society, please contact Steven J. Schapiro, IPS Treasurer and Vice President for Membership, UTMDACC, 650 Cool Water Drive, Bastrop, TX 78602, USA, Tel: +1 512 321 3991, Fax: +1 512 332 5208, sschapir@mdanderson.org. For Regular Members the annual fee is $40.00, for Student Members $20.00, and for Lifetime Membership – a bargain for youn-
New Editor of American Journal of Primatology (AJP)

The ASP Search Committee selected and the Board of Directors approved the nomination of Linda Fedigan as the new AJP editor. Dr. Fedigan will be replacing the interim editors, Melinda Novak and Randy Keyes, in mid-January 2004. She is in the process of selecting Section Editors "to represent as wide a spectrum of expertise in primatology as possible". Dr. Fedigan, an anthropologist, received her Ph.D. from the University of Texas at Austin. She is currently a Professor of Anthropology at the University of Calgary and holds the prestigious Canada Research Chair. Linda has studied many species of primates, both in the field and in captivity – for example, Japanese monkeys, vervets, capuchins, howlers and spider monkeys. She is the author/editor of five books and over 70 journal articles and book chapters. As a widely respected and well-known primatologist, she will bring substantial credibility and strength to the office. For more information about Dr. Fedigan and her extensive research, please visit her finely designed website at: http://www.ucalgary.ca/~fedigan/fedigan.htm.

New Listserver for African Conservationists

The Africa Section of the Society for Conservation Biology (SCB) now has a list server: AfricaList. This listserve is designed to facilitate communication and networking between conservation biologists from Africa and those interested in African conservation issues. Appropriate messages for AfricaList include:

- job, funding and field course announcements,
- questions and news issues related to conservation in Africa.

The AfricaList is open to anyone interested in conservation biology in Africa - you do not need to be a member of SCB. To sign on to the Listserve, go to

[http://list.conbio.org/mailman/listinfo/africalist/]
[http://list.conbio.org/mailman/listinfo/africalist/]

You may also sign on using email if you don't have web access. Send a message to: [mailto:africalist-request@list.conbio.org]
[africalist-request@list.conbio.org]

In the body of the message, type: subscribe [password] [nodigest] [address= YourEmailAddress]

Your password must be given to unsubscribe or change your options, but if you omit the password, one will be generated for you. You may be periodically reminded of your password. The next argument may be either: 'nodigest' or 'digest' (no quotes!). If you wish to subscribe using an address other than the address you sent this request from, you may specify address (no brackets around the email address, and no quotes!) So, for example: subscribe [pw1][nodigest][address= adt@conbio.org] this subscribes email address adt@conbio.org with password pw1

To send messages to AfricaList use the following email address:

[mailto:africalist@list.conbio.org] africalist@list.conbio.org

To unsubscribe to AfricaList: unsubscribe [password][address=YourEmailAddress]

If given, your password must match your current password. If omitted, a confirmation email will be sent to the unsubscribing address. If you wish to unsubscribe an address other than the address you sent this request from, you may specify address=YourEmailAddress' (without the quotes!)
data on the population densities, microhabitat spatial distributions, diets and behavior of the two species of mouse lemur that were known to inhabit this reserve: Microcebus griseorufus and Microcebus murinus. The diminutive M. griseorufus had been described at Beza Mahafaly (Rasoloarison et al. 2000; Yoder et al. 2000) but nothing was known of its demography, ecology, or behavior. This was the first study of mouse lemurs conducted at the Beza Mahafaly Special Reserve.

To confirm the presence of mouse lemurs at Beza Mahafaly, and because these animals had never been studied at Bezam before, I began with an intensive mark-recapture program. Between April 1-7 banana-baited traps were set for seven consecutive nights in the gallery forest; from April 8-14 traps were set in the spiny forest, and between April 15-21 at Ihazoara. All traps were checked daily. No mouse lemurs were trapped in the gallery forest during the first week of capture.

Following the same procedures, the fourth, fifth, and the sixth weeks were also devoted to captures in the gallery forest, spiny forest, and at Ihazoara, respectively. At the end of May, I used the standard procedure of setting and checking traps for only three successive nights within each of the forest type. During the entire study period (April through August), the total number of capture days within each forest was 23 (two weeks in April and early May) + three days (end of May) + three days (end of June) + three days (end of July)). A total of 2990 (23 x 130) trap-nights were accumulated per forest type.

Each captured individual was temporarily immobilized using 0.01 ml Telazol. Microchips (transponders) were implanted, and ears were clipped so that individuals could be identified. Recaptured individuals were identified using a Trovan-transponder. All captured individuals were measured using plastic digital calipers, and weighed using a Pesola scale. All individuals were returned to the place of capture after nightfall on the same day.

We expected to see the geographically widespread species, Microcebus murinus, in the lusher gallery habitat, and to find M. griseorufus in marginal habitats. Microcebus murinus is common in forests to the north of Beza Mahafaly, including Kirindy/CPFPP, Manamby, Vohimena, Andranomena, and Ankarafantisika (Rasoloarison et al. 2000; Radespiel 2000; Eberle and Kappeler 2002). Prior studies of M. murinus in little disturbed forests (e.g., Kirindy/CPFPP, Berenty) have found them to prefer habitats near rivers (especially during the dry season; see Yoder et al. 2002; Rasoazanabary [2001, in review]). The present study did not match these expectations. In habitats (1) and (3) above, we found many M. griseorufus but no M. murinus. The spiny forest was dominated by M. griseorufus as well (Table 1), but contained a small number of M. murinus (Table 2).

There are three different habitats at Beza Mahafaly: (1) a gallery forest surrounded by a barbed wire fence (Parcel 1); (2) a spiny forest (Parcel 2) located in an open, “unprotected” area – i.e., not fenced, but part of the reserve; and (3) a dry, deciduous, unfenced forest (Ihazoara) located across the Sakamena River. There are also transitional forests located between the gallery and spiny forests that are not part of the reserve. Within the fenced (gallery) area, a sharp ecological gradient from the east (near a river) to the drier west has been documented (Sussman and Rakotofyzy 1994), and the leafing and fruiting patterns of key plant species have been studied.

To confirm the presence of mouse lemurs at Beza Mahafaly, census data were collected along transects of 3 km in each of the three habitats listed above. We then used standard capture-recapture techniques to mark individuals and collect basic morphometric data in all three habitats. In order to capture mouse lemurs, 130 Sherman live traps (7.7 x 7.7 x 30.5 cm) per night were baited with bananas and placed at 25 m intervals within each forest habitat.

Because my intent was to initiate a long-term study of mouse lemurs at Beza Mahafaly, and because these animals had never been studied at Bezam before, I began with an intensive mark-recapture program. Between April 1-7 banana-baited traps were set for seven consecutive nights in the gallery forest; from April 8-14 traps were set in the spiny forest, and between April 15-21 at Ihazoara. All traps were checked daily. No mouse lemurs were trapped in the gallery forest during the first week of capture.

Following the same procedures, the fourth, fifth, and the sixth weeks were also devoted to captures in the gallery forest, spiny forest, and at Ihazoara, respectively. At the end of May, I used the standard procedure of setting and checking traps for only three successive nights within each of the forest type. During the entire study period (April through August), the total number of capture days within each forest was 23 (two weeks in April and early May) + three days (end of May) + three days (end of June) + three days (end of July)). A total of 2990 (23 x 130) trap-nights were accumulated per forest type.

Each captured individual was temporarily immobilized using 0.01 ml Telazol. Microchips (transponders) were implanted, and ears were clipped so that individuals could be identified. Recaptured individuals were identified using a Trovan-transponder. All captured individuals were measured using plastic digital calipers, and weighed using a Pesola scale. All individuals were returned to the place of capture after nightfall on the same day.

We expected to see the geographically widespread species, Microcebus murinus, in the lusher gallery habitat, and to find M. griseorufus in marginal habitats. Microcebus murinus is common in forests to the north of Beza Mahafaly, including Kirindy/CPFPP, Manamby, Vohimena, Andranomena, and Ankarafantisika (Rasoloarison et al. 2000; Radespiel 2000; Eberle and Kappeler 2002). Prior studies of M. murinus in little disturbed forests (e.g., Kirindy/CPFPP, Berenty) have found them to prefer habitats near rivers (especially during the dry season; see Yoder et al. 2002; Rasoazanabary [2001, in review]). The present study did not match these expectations. In habitats (1) and (3) above, we found many M. griseorufus but no M. murinus. The spiny forest was dominated by M. griseorufus as well (Table 1), but contained a small number of M. murinus (Table 2).

There are three different habitats at Beza Mahafaly: (1) a gallery forest surrounded by a barbed wire fence (Parcel 1); (2) a spiny forest (Parcel 2) located in an open, “unprotected” area – i.e., not fenced, but part of the reserve; and (3) a dry, deciduous, unfenced forest (Ihazoara) located across the Sakamena River. There are also transitional forests located between the gallery and spiny forests that are not part of the reserve. Within the fenced (gallery) area, a sharp ecological gradient from the east (near a river) to the drier west has been documented (Sussman and Rakotofyzy 1994), and the leafing and fruiting patterns of key plant species have been studied.

To confirm the presence of mouse lemurs at Beza Mahafaly, census data were collected along transects of 3 km in each of the three habitats listed above. We then used standard capture-recapture techniques to mark individuals and collect basic morphometric data in all three habitats. In order to capture mouse lemurs, 130 Sherman live traps (7.7 x 7.7 x 30.5 cm) per night were baited with bananas and placed at 25 m intervals within each forest habitat.

Because my intent was to initiate a long-term study of mouse lemurs at Beza Mahafaly, and because these animals had never been studied at Bezam before, I began with an intensive mark-recapture program. Between April 1-7 banana-baited traps were set for seven consecutive nights in the gallery forest; from April 8-14 traps were set in the spiny forest, and between April 15-21 at Ihazoara. All traps were checked daily. No mouse lemurs were trapped in the gallery forest during the first week of capture.

Following the same procedures, the fourth, fifth, and the sixth weeks were also devoted to captures in the gallery forest, spiny forest, and at Ihazoara, respectively. At the end of May, I used the standard procedure of setting and checking traps for only three successive nights within each of the forest type. During the entire study period (April through August), the total number of capture days within each forest was 23 (two weeks in April and early May) + three days (end of May) + three days (end of June) + three days (end of July)). A total of 2990 (23 x 130) trap-nights were accumulated per forest type.

Each captured individual was temporarily immobilized using 0.01 ml Telazol. Microchips (transponders) were implanted, and ears were clipped so that individuals could be identified. Recaptured individuals were identified using a Trovan-transponder. All captured individuals were measured using plastic digital calipers, and weighed using a Pesola scale. All individuals were returned to the place of capture after nightfall on the same day.

We expected to see the geographically widespread species, Microcebus murinus, in the lusher gallery habitat, and to find M. griseorufus in marginal habitats. Microcebus murinus is common in forests to the north of Beza Mahafaly, including Kirindy/CPFPP, Manamby, Vohimena, Andranomena, and Ankarafantisika (Rasoloarison et al. 2000; Radespiel 2000; Eberle and Kappeler 2002). Prior studies of M. murinus in little disturbed forests (e.g., Kirindy/CPFPP, Berenty) have found them to prefer habitats near rivers (especially during the dry season; see Yoder et al. 2002; Rasoazanabary [2001, in review]). The present study did not match these expectations. In habitats (1) and (3) above, we found many M. griseorufus but no M. murinus. The spiny forest was dominated by M. griseorufus as well (Table 1), but contained a small number of M. murinus (Table 2).

Table 1. Mean body masses (in g) of captured Microcebus griseorufus at Beza Mahafaly, sample sizes in parentheses.

<table>
<thead>
<tr>
<th>Habitat</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallery (n)</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Spiny (n)</td>
<td>10</td>
<td>12</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Ihazoara (n)</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2. Mean body mass (in g) of M. murinus in the spiny forest, Beza Mahafaly, sample sizes in parentheses.

<table>
<thead>
<tr>
<th>Gender</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>44 (n = 1)</td>
<td>50.3 (n = 3)</td>
<td>43.0 (n = 1)</td>
<td>40.5 (n = 2)</td>
</tr>
<tr>
<td>Females</td>
<td>82 (n = 1)</td>
<td>63.5 (n = 2)</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
46 (29 male and 17 female) mouse lemurs were captured. During the dry season, fewer individuals were captured and the percentage of females decreased. During the month of June, 30 individuals (22 males and 8 females) and in July, 33 individuals (25 males and 8 females) were captured. In total, there were 89 individuals (57 males and 32 females) captured across the three habitats; many of the individuals that were initially captured in April and May were recaptured in June and July.

Microcebus murinus was captured only in April (1 male and 1 female) and May (2 males and 2 females). It is unlikely that the failure to capture many individuals of *M. murinus* was due to this species entering torpor early. This explanation would only hold if both sexes would enter seasonal torpor prior to the month of April. At Kirindy/CFPF, *M. murinus* females enter seasonal torpor beginning in the second week of May, and they emerge from torpor in September (Schmid and Kappeler 1998; Rasoazanabary, submitted). Some adult females do not enter seasonal torpor until June. Adult males remain active during the entire dry season, and the same is true of juvenile males and females. Seasonal torpor, especially in adult females, has been noted for other species of mouse lemur as well (e.g., the brown mouse lemur, *Microcebus rufus*), whereas still others experience little or no seasonal torpor in either sex (e.g., the golden brown mouse lemur, *M. ravelobensis* [Randrianambinina et al. 2003]; *M. berthei* [Schwab and Ganzhorn 2004]). However, no mouse lemur thus far studied enters seasonal torpor as early as April, and none exhibits complete torpor in both sexes.

It seems more likely that *M. murinus* is extremely rare at Beza Mahafaly. In fact, this inference is supported by the failure of Rasoloarison to find any *M. murinus* at Ihazoara in April, 1997, and by the discovery of only a single specimen of *M. murinus* in the large sample of mouse lemur mandibles collected by Goodman et al. (1993a,b) from owl pellets at both Ihazoara and Beza Mahafaly (see Rasoloarison et al. 2000). The mouse lemur at Beza Mahafaly and Ihazoara are predominantly *M. griseorufus*. The mouse lemurs at other southern sites appear to be predominantly *M. griseorufus*; this is the case at Berenty (Yoder et al. 2002) and, apparently, at Ambosary (American Museum of Natural History Collection, made in October and November, 1929 and 1931) and at the subfossil site, Andrahomana (personal observation, Cuozzo et al., unpublished data).

The distribution of mouse lemurss across the three habitats was also of interest. Mouse lemurs were most abundant in the unfenced spiny forest (45 of the total of 89 individuals were captured and released here). In striking contrast, mouse lemurs were difficult to find in the gallery and dry forests (21 and 23 individuals were captured at each, respectively). No mouse lemurs were found in a portion of the protected gallery forest that should be ideal habitat, as it is located near the river. This region is also directly across from a large area outside the reserve with many villages. The proximity of villages may have influenced the distribution of mouse lemurs at Beza Mahafaly. None of the six *M. murinus* were captured in the gallery forest (all were in the spiny forest). It is noteworthy that Yoder et al. (2002) found a similarly low population of *Microcebus* in the gallery forest at Berenty; of the 30 mouse lemur individuals captured in March and April, 2000, at Berenty, 29 were found in the spiny forest (all *M. griseorufus*) and only one in the gallery forest (*M. murinus*).

Females apparently enter torpor earlier at Beza Mahafaly than at Kirindy/CFPF, as the ratio of captured males to females was higher at Beza than at Kirindy/CFPF across all habitats during the months of April and May (Table 3). The ratios of males to females were more comparable to those at Kirindy/CFPF outside the gallery forest, during the months of June and July. A higher sex bias during the months of June and July confirms that males and females have different activity patterns during the height of the dry season (with females being the less active of the two). This is true for *M. griseorufus* at Beza, as it is for *M. murinus* at Kirindy/CFPF. Female *M. griseorufus* also show a pattern of weight loss through the dry season (while males do not); this is another indicator of differential activity patterns of males and females during this season.

Table 3. Sex ratio of mouse lemur captures, males: females, at Kirindy/CFPF (1999) and Beza Mahafaly (2003)

<table>
<thead>
<tr>
<th>Forest</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kirindy/CFPF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallery forest</td>
<td>0.76</td>
<td>0.64</td>
<td>1.86</td>
<td>2.67</td>
</tr>
<tr>
<td>Beza: other habitats</td>
<td>2.50</td>
<td>no females</td>
<td>3.50</td>
<td>9.00</td>
</tr>
<tr>
<td>Total at Beza</td>
<td>1.27</td>
<td>1.35</td>
<td>2.50</td>
<td>2.29</td>
</tr>
<tr>
<td>Total at Kirindy/CFPF from Rasoazanabary (2001, submitted)</td>
<td>1.12</td>
<td>1.71</td>
<td>2.75</td>
<td>3.13</td>
</tr>
</tbody>
</table>

The particularly strong sex bias of mouse lemurs in the gallery forest was not expected, however. The ratio of males to females in the gallery forest, even during the month of April, was 2.5:1, and no females were captured in the gallery forest during the month of May. Furthermore, during the months of June and particularly July, the ratios of male to female captures were very high in the gallery forest. Further research must be conducted to ascertain whether this difference is “real” or an accident of sampling during one dry season. If real, then the population of mouse lemurs within the gallery (i.e., most protected) area may not be viable, as females are the rate-limiting entity in population growth. This has obvious conservation priority implications.

Threats to the habitats outside the fenced area were evident. Within the spiny forest, for example, people freely graze their cattle, cut vegetation and set fires (using slash and burn) to grow corn. Some of the trees that are used by the mouse lemurs in the spiny forests are valued for other purposes by the local people. They are used for the collection of honey, and for logging. We came across two “daro” trees used by mouse lemur that were cut by people during the study period. In addition, it was not uncommon to see cattle in this forest. The mouse lemurs inhabiting the spiny and dry forests may be particularly vulnerable to human disturbance because, whereas those in the gallery forest tended to utilize tree substrates more than 10 m above the ground, those in the spiny and dry forests were generally found at heights of around 6 m from the ground.

Baseline data (in addition to abundance and distribution patterns) collected on focal male and female *M. griseorufus* and *M. murinus* included activity patterns, diet, body mass and basic morphometrics (including dental molds), nest characteristics, and day ranges. Interesting differences in the diets and behavior of mouse lemurs in the spiny and gallery forests were observed. In the gallery forest, mouse lemurs ate a variety of insects and gums of various trees. In the spiny forest, they mostly consumed gum, which may be the preferred resource for *M. griseorufus* (as was also observed for *M. murinus* at Kirindy/CFPF Forest by Génin (2003)). Mouse lemurs in the gallery forest tended to use larger home ranges and to prefer to sleep together in open, unprotected sleeping sites such as vegetation tangles in Euphorbiaceae (or “Famata” trees). They frequently changed from one sleeping site to another. However, mouse lemurs in the spiny forest were less active (particularly between 22-3 hrs); they tended to use protected sleeping sites (such as tree holes), and to remain in their nests for longer periods every day. This difference may reflect responses by...
mouse lemurs to aerial predators in more open (spiny forest) vs. closed (gallery forest) habitats. Intensive predation on mouse lemurs at Beza Mahafaly and other sites in Madagascar is well known (Goodman et al. 1993a,b). Owls were observed repeatedly every night in the spiny forest; one couple was observed in the gallery forest.

Table 1 shows the body mass statistics for male and female *Microcebus griseorufus*, across the dry season, and Table 2 shows the same for the few individuals of *M. murinus* captured in the spiny forest. April and May capture data confirm that *Microcebus murinus* are slightly larger than *M. griseorufus*. However, the number of *M. murinus* captured is so small that a statistical comparison cannot be considered meaningful. Normally, mouse lemur females are heavier than males prior to the dry season (as they prepare for seasonal hibernation); such differences were observed for both although the differences were not as great as has been observed at other forests. There was great variation in body mass of females during the months of April and May, with the heaviest two individuals (83 g and 81 g — one *M. murinus* and one *M. griseorufus*) both located in the spiny forest (May). During the study period, the body masses of female mouse lemurs in the spiny forest ranged from 34 to 83 g and those of males from 24.5 to 52 g. In the gallery forest, females ranged from 48 to 63 g, whereas males ranged from 38.5 to 65 g. The ranges of body masses at Ihazoara were 34 to 63 g (for females) vs. 35 to 63 g (for males). There are significant body mass differences for males across the three study localities in April (ANOVA, *F* = 4.43, df = 2, 16, *p* < 0.05), with the means for Ihazoara (52.0 g) and the gallery forest (49.6 g) higher than for the spiny forest (38.4 g). That body mass difference disappears in May (ANOVA, *F* = 0.29, df = 2, 26, *p* = .75), and remains insignificant for the rest of the dry season (June ANOVA, *F* = 0.45, df = 2, 19, *p* = .65; July, *F* = 0.88, df = 2, 22, *p* = .43). As in other forests (e.g., Kirindy/CFPF), male mouse lemurs do not lose weight over the dry season. A few individual mouse lemurs at Beza Mahafaly could not be classified as belonging to either species because their coats conform to the norm for neither *M. murinus* nor *M. griseorufus* (genetic analysis of ear clips of these individuals is now being conducted at Yale University [Yoder and others, unpublished]).

In summary, a survey of mouse lemurs at the Beza Mahafaly Special Reserve, conducted between April and August, 2000, has documented the prevalence of *M. griseorufus* and the rarity or absence of *M. murinus* in all habitats. The "common" gray mouse lemur, *M. murinus*, may be critically endangered at Beza Mahafaly. Indeed, this species may be more threatened than is commonly realized. Ramanamanjato and Ganzhorn (2001) studied *M. murinus* in the littoral forests of southern Madagascar. They note that this species sometimes occupies habitats into which it spreads but does not reproduce. Future research will determine whether the same is true in some habitats at Beza Mahafaly.

Acknowledgments

I am grateful for the opportunity to study mouse lemurs at Beza Mahafaly, and the support and assistance of the Scientific Coordinator, Joelisson Ratsirarson, staff (especially Jeanniqu Randrianarisoa), and local guides (Rugbert, Enafa, Elahavelo, Eddy and Dada). I also thank my graduate advisor, Dr. Laurie Godfrey, for her intellectual support and mentoring. I thank Dr. Frank Cuozzo for sharing his data and ideas on mouse lemurs from Amboasary, and I thank Drs. David Burney, William Jungers, and Laurie Godfrey for access to subfossil mouse lemur specimens from Andrahomana. This research was supported by the Margot Marsh Biodiversity Foundation, Primate Conservation, Inc., the American Society of Primatologists, and a Wenger-Gren Professional Development Fellowship.

References

Inventaire des Lémuriens dans la partie nord-ouest de Madagascar et Distribution d’Eulemur macaco flavifrons

Guy Hermas Randriahaina

Département de Paléontologie et d’Anthropologie Biologique, Université d’Antananarivo, BP 906, Antananarivo, Madagascar
Joseph Clément Rabarivola
Département de la Biologie Animale et de l’Ecologie, Université de Mahajanga, Mahajanga.

Introduction

Les lémuriens sont parmi les plus importantes faunes de Madagascar et ils sont répartis dans toute l’île. De nombreuses études sont frites pour les connaître davantage afin des mieux protéger car ils sont tous en danger (Robarivola 1996). De nombreuses espèces sont déjà protégées dans des Aires Protégées, ce qui n’est pas le cas, pour Eulemur macaco flavifrons. C’est pourquoi, le zoo de Mulhouse s’est impliqué depuis quelques années pour la sauvegarde de cette espèce dans un programme international de recherche et de conservation (Lernould 2002). La biogéographie de cette espèce semble encore floue même si l’aire de répartition est connue au nord et au sud (Koenders et al. 1985) ainsi que la limite à l’ouest (Rabarivola et al. 1991; Meyers et al. 1989). Pour compléter les données connues et bien délimiter l’aire de répartition à l’est, nous avons fait un recensement du 19 juillet au 19 septembre 2003 dans différents sites.

Méthodologie

Nous avons utilisé la méthode nommée transect linéaire. Il s’agit de tracer une ligne de longueur quelconque et de suivre ce tracé d’une vitesse lente environ 1 km/h en regardant les deux côtés de la ligne. Les pistes utilisées par des villageois ou par des sangliers ont été mesurées. Elles sont variées suivant l’état de la forêt; celle du transect, il était difficile de faire une droite rectiligne. La visite pour le recensement diurne se fait entre 7 h 30 et 11 h 30 le matin et entre 14 h 30 et 17 h 30 l’après-midi. La visite nocturne commence vers 19 h 30 pour terminer 2 ou 3 heures plus tard. À chaque contact avec un individu ou un groupe, nous avons noté:

• le nom de l’espèce,
• le nombre d’individus,
• la classe d’âge et la composition sexuelle.

Les assistants sont aussi questionnés sur l’existence et la morphologie des lémuriens qu’ils ont vu autour de leur village.

Sites d’étude

Tableau 1: Caractéristiques des sites d’étude.

<table>
<thead>
<tr>
<th>Localités</th>
<th>Sites d’étude</th>
<th>Longueur du transect [m]</th>
<th>Coordonnées</th>
<th>Altitude (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Longueur</td>
<td>Sud</td>
<td>Est</td>
<td></td>
</tr>
<tr>
<td>Anjavidimarina</td>
<td>1</td>
<td>9000</td>
<td>14°16’48”</td>
<td>48°24’46”</td>
</tr>
<tr>
<td>Bengamarina</td>
<td>2</td>
<td>8000</td>
<td>14°19’45”</td>
<td>48°30’30”</td>
</tr>
<tr>
<td>Ambodimadiso</td>
<td>3</td>
<td>5750</td>
<td>14°16’23”</td>
<td>48°36’53”</td>
</tr>
<tr>
<td>Ambalihabe</td>
<td>4</td>
<td>14°39’59”</td>
<td>48°13’55”</td>
<td>59</td>
</tr>
<tr>
<td>Amporingamena</td>
<td>5</td>
<td>1500</td>
<td>14°37’51”</td>
<td>48°16’30”</td>
</tr>
<tr>
<td>Ankiaie</td>
<td>6</td>
<td>4000</td>
<td>14°36’51”</td>
<td>48°15’36”</td>
</tr>
<tr>
<td>Andranobe</td>
<td>7</td>
<td>4020</td>
<td>14°32’06”</td>
<td>48°11’58”</td>
</tr>
<tr>
<td>Betolongo</td>
<td>8</td>
<td>2750</td>
<td>14°23’27”</td>
<td>48°11’58”</td>
</tr>
<tr>
<td>Andrafiabe</td>
<td>9</td>
<td>14°29’50”</td>
<td>48°12’22”</td>
<td>35</td>
</tr>
<tr>
<td>Ankarafa</td>
<td>10</td>
<td>3385</td>
<td>14°22’38”</td>
<td>47°45’52”</td>
</tr>
<tr>
<td>Antsakoamamy</td>
<td>11</td>
<td>3000</td>
<td>14°29’50”</td>
<td>48°15’36”</td>
</tr>
<tr>
<td>Amiandrana</td>
<td>12</td>
<td>3190</td>
<td>14°31’59”</td>
<td>47°59’57”</td>
</tr>
</tbody>
</table>

Résultats

Nous n’avons pu faire aucun census à Ambalihabe (site 4) et à Andrafiabe (site 9) à cause de la dégradation de la forêt mais nous avons quand même interrogé sur l’existence des lémuriens dans leur région. Dans certains sites, nous n’avons pas pu faire un census nocturne soit à cause de la difficulté du chemin. C’était le cas d’Ankiabe (site 6) et d’Antsakoamamy (site 11) soit à cause de l’interdiction de circuler la nuit comme à Ambendrana (site 12). Les sites où nous avons pu observer sont donc à Anjavidimarina (site 1), à Ankiaie (site 6), à Andranobe (site 7), à Ankarafa (site 10), à Antsakoamamy (site 11) et à Ambendrana (site 12). Le plus grand nombre d’animaux a été observé dans les sites à Ankarafa (site 10) et à Ambendrana (site 12) (Tableau 2 - 4).

Fig. 1: Représentation des sites.

Tableau 2: Les espèces recensées.

<table>
<thead>
<tr>
<th>Site</th>
<th>E m f</th>
<th>E ff</th>
<th>M m</th>
<th>Mi</th>
<th>L d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>(+)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>(+)</td>
<td>(+)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>-</td>
<td>(+)</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>(+)</td>
<td>-</td>
<td>(+)</td>
<td>?</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>(+)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>+</td>
<td>-</td>
<td>?</td>
<td>?</td>
<td>-</td>
</tr>
</tbody>
</table>

E m f = Eulemur macaco flavifrons; E ff = Eulemur fulvus fulvus; M m = Microcebus murinus; Mi = Miroza coquereli; L d = Lepilemur dorsalis; + = Présence; - = Absence; (+) = Présence selon les guides et la population locale; ? = Pas d’information, nous n’avons pas pu faire un recensement.

Tableau 3: Taille et composition de groupe d’Eulemur macaco flavifrons; m = males, f = femelles.

<table>
<thead>
<tr>
<th>Sites</th>
<th>Groupe</th>
<th>Adultes</th>
<th>Juvéniles</th>
<th>Enfants</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anjavidimarina</td>
<td>Site 1</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Ankiaie</td>
<td>Site 3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Site 6</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Andranobe</td>
<td>Site 7</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>
Tableau 4: Abondance relative d’*Eulemur macaco flavifrons* (individus par km parcouru).

<table>
<thead>
<tr>
<th>Sites</th>
<th>Groupe</th>
<th>Adul t es</th>
<th>Ju véniles</th>
<th>Enfants</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m f m f m f</td>
</tr>
<tr>
<td>Ankarafa</td>
<td>6 8 2</td>
<td>1 11</td>
<td>7 4 1</td>
<td>1 6</td>
<td>8 4 3</td>
</tr>
<tr>
<td>Site 10</td>
<td>8 4 3</td>
<td>1 7</td>
<td>9 3 4</td>
<td>1 8</td>
<td>10 3 4</td>
</tr>
<tr>
<td>Ambendrana</td>
<td>11 3 3</td>
<td>1 6</td>
<td>12 3 3</td>
<td>1 6</td>
<td>13 1 2</td>
</tr>
<tr>
<td>Site 12</td>
<td>14 3 3</td>
<td>1 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14 45 38 3 4 3 3 96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interprétations et discussions

Bien que l’altitude peut affecter la distribution de quelques espèces de plantes et d’animaux, ceci n’affecte pas celle d’*Eulemur macaco flavifrons* car depuis Anjavidimarina qui est à 1148 m d’altitude en passant par Ankiabe qui se trouve à 586 m, Ankarafa à 171 m et Ambendrana à 9 m d’altitude, *E. m. f.* persiste.

En ce qui concerne l’abondance relative, elle est très faible à Antsakoamamy ou la dégradation de la forêt s’avère très aiguë. Elle tient la seconde place à Ambendrana même si la forêt à Anjavidimarina est beaucoup plus arborée que celle d’Ambendrana car dans ce site *E. m. flavifrons* n’est pas chassé malgré l’exploitation de la forêt. Il est très facile de les observer. La présence de l’homme ne les perturbe guère et nous avons trouvé un groupe qui a son lieu de dortoir dans le village. Pour les autres sites sauf à Ankarafa, l’exploitation de la forêt et la chasse agissent ensemble pour réduire l’abondance de cette espèce. Des Bongamarina vers l’Est jusqu’à Bealanana nous n’avons trouvé aucun *E. m. flavifrons* et c’est à partir d’Ankiabe (site 6) que nous avons commencé à revoir cette espèce. A Ankarafa et à Ambendrana la taille des femelles d’*E. m. flavifrons* paraît plus grande que celle des mâles surtout lorsqu’elles ont un bébé. Tandis qu’à Ankiabe et à Andranobe les deux sexes ont à peu près la même taille même si les femelles ont un bébé.

Conclusion

Eulemur macaco flavifrons vit à l’ouest de la rivière Sandrakota et au nord de la rivière Maevarano. L’altitude n’est pas une barrière à la distribution d’*E. m. flavifrons*. Il y a une forte variation du nombre d’*E. m. flavifrons* selon le site où on le trouve. Cette variation peut être due à la double pression anthropique que sont la chasse et la destruction de la forêt.

Remerciements

Nous sommes très reconnaissant pour les personnes et entités citées ci-après: La Direction Générale des Eaux et Forêts pour avoir donné nous délivrer une autorisation; Le Département de la Biologie Animale et de l’Ecologie, Université de Mahajanga; Le département de Paléontologie et d’Anthropologie Biologique de l’Université de Tsinjoarivo; et les assistants de terrain. Le projet a été soutenu financièrement par l’AECE (Association Européenne pour l’Etude et la Conservation des Lémuriens).

Bibliographie

New discovery of subfossil *Hapalemur simus*, the greater bamboo lemur, in western Madagascar

Laurie R. Godfrey
Department of Anthropology, 240 Hicks Way, University of Massachusetts, Amherst, MA 01003, USA

Elwyn L. Simons
Duke University Primate Center, Division of Fossil Primates, 1013 Broad Street, Durham, NC 27705, USA

William L. Jungers
Department of Anatomical Sciences, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA

Donald D. DeBlieux
Utah Geological Survey, Salt Lake City, UT 84114, USA

Prithijit S. Chattath
Duke University Primate Center, Division of Fossil Primates, 1013 Broad Street, Durham, NC 27705, USA

Correspondence to Laurie Godfrey: lgodfrey@anthro.umass.edu

A Duke University Primate Center expedition to the Bemaraha Plateau of western Madagascar took place in July 2000, and included a crew of Elwyn Simons, Prithijit Chattath, Don DeBlieux, and Matt Oliphant from America. They were joined by two students from the University of Antananarivo, Jocelyn Bezara and Ruffin Rabeson._interpreters, in addition to members of the discovery crew, Laurie Godfrey and W. Jungers. Results of that more comprehen-
sive research will be published elsewhere, hopefully with a radiocarbon date (Simons et al. in prep.). *Hapalemur simus* can be distinguished easily from its congeners on the basis of its size and morphology.

Hapalemur simus is restricted today to several forests in the southeast, including Ranomafana and Andringitra (Goodman et al. 2001; Irwin et al. in press; see cover picture), although there is new evidence for a wider distribution (Dolch et al. 2004; Rakotosamimanana et al. 2004). Several decades ago, it was believed to be extinct, until it was “rediscovered” by Peyriéras at a market at Vondrozo (Fig. 1); ironically, this may be south of the limit of its actual distribution.

That *Hapalemur simus* was once widespread in Madagascar was recognized by Vuillaume-Randriamanantena et al. (1985), who reported the former presence of this species not merely at Ampasambazimba in central Madagascar (confirming the like suspicions of Mahé 1976 and Tattersall 1982) but at both Anjoihbe and Ankaranah. Many additional specimens of *H. simus* were found at the latter two sites during the late 1980s and early 1990s (Wilson et al. 1989; Simons et al. 1990; Godfrey et al. 1999); it has proven to be one of the most abundant lemur taxa at these subfossil localities.

No *Hapalemur* has ever been discovered at any of the subfossil sites in the south (including those intensively explored in the past two decades, such as Ankilitelo in the southwest and Andrahomana in the southeast). This implies that the south in the past, as today, was inhospitable to members of this genus, probably due to a lack a bamboo. The diets of all bamboo lemurs (and particularly the greater bamboo lemur) are specialized (Meier et al. 1987; Overdorff et al. 1997; Mutschler et al. 1998; Tan 1999; Randrianarisoa 1999; Grassi 2002).

Hapalemur simus seems highly restricted by microhabitat within its current geographic range (Irwin et al. in review). During all seasons its key resource is the giant bamboo, *Cathariostachys madagascariensis* (e.g., Tan 1999). Assuming little regional variation in niche characteristics, the discovery of widespread *H. simus* at distant localities virtually everywhere in Madagascar except the south provides evidence for a former vegetation distribution very different from that of today in many areas.

Radiocarbon dating, largely for extinct taxa, has confirmed a prolonged extinction process, with a rapid initial decline in the biomass of megafauna but with most now-extinct taxa enduring well past the initial advent of humans on Madagascar ca. 2000 years ago (see summary by Burney et al. 2003, in press). Recent geographic range contraction has also been documented for a variety of still-extant lemurs, including *Indri indri* (Jungers et al. 1995), *Varecia variegata*, several species of *Eulemur*, and *Hapalemur simus* (Godfrey et al. 1999). The precise chronology of that geographic range contraction for still-extant species is unknown, as radiocarbon dates are available for very few individuals. Only one specimen of *H. simus* from Ankaranah has been dated (Simons et al. 1995), and this date (4560 ± 70 BP), well before humans arrived on the Great Red Island, provides no evidence for or against overlap in the north. We do know from museum specimens, however, that *H. simus* occupied most of the eastern rain forest (from just south of the Bay of Antongil to the region of Fianarantsoa) a century ago (Godfrey and Vuillaume-Randriamanantena 1986). Whether *H.*
Confirmation of Aye-Aye (Daubentonia madagascariensis) in the Tsingy de Bemaraha National Park

Léon Pierrot Rahahanirina

Department of Biology Animale, University of Antananarivo, BP 906, Antananarivo, Madagascar; rahpierrot@yahoo.com

Luke Dollar*

Nicholas School of the Environment and Earth Sciences, Duke University; Durham, NC 27708, USA, luke@duke.edu

*to whom correspondence should be addressed.

There is a large discrepancy between the number of confirmed versus suspected sites where aye-aye (Daubentonia madagascariensis) are found, particularly in non-moist forest habitats throughout Madagascar. This report provides information on the first confirmed sighting of *D. madagascariensis* in Bemaraha National Park, at the Ankidroadroa research site. While this is the first confirmed sighting, aye-aye have been noted in the general region of the Park, with little specific locality data known (Sterling 2003).

Tsingy de Bemaraha National Park is located in the central-western portion of Madagascar, in the commune of Bekopaka, sub-prefecture of Antsalova, in the Mahajanga province. It is located between 18°12' and 19°07' S, and 44°34' and 44°56' E. The Ankidroadroa research site is located near the southern end of the Park. Tsingy de Bema-
The park contains high levels of species richness and endemicism. Including more than 450 species of plant (84% endemism), as well as at least 11 lemur, 94 bird, and 69 reptile and amphibian species (Rasoloarison and Paquier 2003).

Our research team conducted carnivore trapping and biodiversity census surveys in Bemaraha from September 17th, 2002 to October 9th, 2002. Trapping surveys were conducted with special emphasis on the local sub-species of the ring-tailed mongoose (*Galidia elegans occidentalis*). In the course of these trapping surveys, we also conducted visual censuses of available prey in the study site. The weather was generally good at the time of the survey because it was the dry season in Madagascar. The evening of October 7, 2002 it rained lightly for one hour. Shortly following the rain, in early evening, members of our team, including four students from Antananarivo University and one guide from the ANGAP Programme Bemaraha went for a night walk for a nocturnal census. At 20:55 h all members of the census team noted eyeshine approximately 14 meters up a tree adjacent to the trail. The animal was identified as an aye-aye, during an observation period of approximately ten minutes. Vocalizations included a short sonorous *cree-cree-cree* lasting two to three seconds (also known as the aye-aye’s signature "Eeep" call). Gnawed holes in tree trunks and branches were seen throughout the research area, especially on dead trees. However no nests were found. The most common signs of aye-aye presence are foraging holes made when individuals look for larvae in dead trees by using their chisel-like incisors.

Table 1: Table of Aye-Aye presence data for dry forest protected areas, including data from Mittermeier et al. 1994, Garbutt 1999, and CAMP 2001.

<table>
<thead>
<tr>
<th>Dry forest protected areas</th>
<th>Confirmed sightings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analamerana Special Reserve</td>
<td>+</td>
</tr>
<tr>
<td>Forêt d’Ambre Special Reserve</td>
<td>+</td>
</tr>
<tr>
<td>Ankaranana Special Reserve</td>
<td>+</td>
</tr>
<tr>
<td>Bora Special Reserve</td>
<td>-</td>
</tr>
<tr>
<td>Ankarantantsika National Park</td>
<td>-</td>
</tr>
<tr>
<td>Baie de Baly National Park</td>
<td>-</td>
</tr>
<tr>
<td>Namoroka National Park</td>
<td>-</td>
</tr>
<tr>
<td>Bemarivo Special Reserve</td>
<td>-</td>
</tr>
<tr>
<td>Maningozoa Special Reserve</td>
<td>-</td>
</tr>
<tr>
<td>Kasijy Special Reserve</td>
<td>-</td>
</tr>
<tr>
<td>Ambohinahary Special Reserve</td>
<td>-</td>
</tr>
<tr>
<td>Bemaraha National Park</td>
<td>+</td>
</tr>
<tr>
<td>Andranomena Special Reserve</td>
<td>-</td>
</tr>
<tr>
<td>Kirindy Mitea National Park</td>
<td>-</td>
</tr>
<tr>
<td>Isalo National Park</td>
<td>-</td>
</tr>
<tr>
<td>Beza Mahafaly Special Reserve</td>
<td>-</td>
</tr>
<tr>
<td>Tsianampetsotse National Park</td>
<td>-</td>
</tr>
<tr>
<td>Cap Sainte Marie Special Reserve</td>
<td>-</td>
</tr>
</tbody>
</table>

+ confirmed sighting; - no sign of *Daubentonia* despite intensive surveys; ? not surveyed

References

Research on Subfossils in Southwestern Madagascar and Ankilítelo Cave

E.L. Simons, V.F.H. Simons, P.S. Chatrath
Division of Fossil Primates, Duke University Primate Center, Durham, NC, USA 27705, esimons@duke.edu, vernesimons@hotmail.com, pchatrat@duke.edu

K.M. Muldoon
Department of Anthropology, Washington University, Saint Louis, MO, USA 63130, kmmuldoon@artssci.wustl.edu.

M. Oliphant, N. Pistole
Lowell Avenue, La Crescenta, CA, USA 91214, bf821@lafn.org.

C. Savvas
12319 Wycliff Lane, Austin, TX, USA 78727

Key words: Ankilítelo, gouffre caves, *Palaeopropithecus*, Tolara, speleology

Introduction
Traveling to Madagascar is an adventure. Just getting to the big island from anywhere in North America is an epic endeavor in and of itself. Once the 20-plus-hour airplane trip to the capital city of Madagascar, Antananarivo, has been completed, final destinations can still be days away by barely passable roads. This type of arduous travel in the name of science and education is exactly what cooperating groups from the Duke University Primate Center Division of Fossil Primates, and the Laboratoire de Département de Paléontologie et Anthropologie Biologique, Université d’Antananarivo, have been undertaking since the early 1980s. During these years many Malagasy and American graduate students and faculty have received training in methods of collection, conservation and study of Malagasy subfossils in what are quite possibly the most bizarre places to be found in Madagascar: deep pit caves in Eocene limestone plateaus in the region of Tolara, southwestern Madagascar, but which outcrop as well all along the western side of the Great Red Island. Our endeavor is to open a window into Madagascar’s amazing past, to illustrate the lives of now extinct giant subfossil lemurs and other giant creatures that once ruled this island world, and to discover the nature of the series of animals that existed together with them. Since 1994 the principal part of our cooperative search for Malagasy subfossils has been carried out in a triangular area of the southernmost portion of the Mikoboka Plateau, directly east of the village of Adabatoka, where over thirty caves have been located. Not all of these contained subfossils — many cave floors have been overdeposited with mud from nearby denuded pastureland.
The caves
Since 1994 our group has collected subfossil animals at several cave sites on the Manamby Plateau or Massif du Mikoboka and, during the 2003 season, surveyed caves in the Toliara Plateau southeast of the city of Toliara. The region northeast of Toliara is made up of a huge Eocene limestone deposit (part of the Mahafaly karsts), which measures approximately 400 meters (over 1300 ft) thick and covers an extensive, as yet unexplored expanse to the north and northeast of the area that we and others have surveyed for caves to date. The greatest known concentration of cave sites lies mainly to the north of the village of Manamby, which in turn is situated about 45 kilometers (94 mi) northeast of Toliara. In the summer of 2003 we camped about 3 kilometers (2 mi) north of Manamby for about one week. The villagers, belonging mainly to the Masikoro tribe, make a living by herding cattle and growing maize. Their hereditary leader at Manamby is King Rimbala, who with the help of his family has directed us to many of the caves we have explored. Apart from those known to local villagers, most of the caves in this region were originally discovered by a group of French cavers from Nice in the fall of 1985 (Peyre 1986). Earlier, the Malagasy speleologist Jean Radofilioa (formerly Duflos) carried out a brief survey (Duflos 1966), and the caves he described then are also listed in Peyre (1986). The group from Nice located, diagrammed and numbered 30 caves. Interestingly, none of the caves in Radofilioa’s list have the same names as any of those provided to us by villagers of caves where we have collected subfossils. In turn, many of the names recorded by the Nice group are also different from identifications we were given. Decary and Keiner (1971) also mention this region in a general inventory of Malagasy cave sites. Cave identification has therefore been challenging. Our survey work, beginning in 1994, has concentrated on caves yielding subfossils and we were unable to locate all of the cave sites that the French mapped in 1985. The search for more caves in the area continues. During the field season of 2003, our collections came primarily from discoveries at two caves, Ankilitelo and Ankiky-Mat, northeast and east of Toliara, respectively. These new subfossil finds include various remains of giant lemurs, an extensive series of microfauna, and an almost complete skull of Cryptoprocta ferox (the largest living Malagasy carnivore).

The road
The main road into the region is extraordinarily bad, primarily used as an ox cart trail for transporting food and produce in and out of the region. The road is barely passable by four-wheel-drive vehicles, and some vehicle damage is to be expected (Fig. 1). It is necessary to maneuver over and around giant boulders and occasional felled trees, while deep ruts in the road have to be straddled. Additionally, villagers have left many tire-puncturing stumps cut at sharp angles. Crew members have to run ahead clearing rocks and creating negotiable paths. Driving into the region therefore takes the better part of a day, or longer, and since the unpaved part of the trail measures only 40 kilometers in length, most people could easily walk this distance faster than it can be completed by car. In driving from our field camp north of Manamby, the trip to Ankilitelo adds several more kilometers over very rough roads. At places the grass is growing three meters high, thus completely obscuring potholes, cave-ins, or sinkholes in or near the road. The villagers at Manamby and close by towns tell of many other caves to the northeast in the country of the Bara tribe, reached by trails and wagon roads running to the northeast from Manamby that appear to be as bad or even worse than the main road entering the region. According to their reports, the caves in that area are almost all deep pits, which initially will have to be accessed by cavers who are trained to collect subfossils, as we have successfully done at other gouffre cave sites. Most of the cave-riddled plateau to the north of our earlier camps is unexplored, but, as stated, is almost (or completely) inaccessible to four wheel drive vehicles. Next season we intend to send advance exploration parties by bicycle into this region, which can be penetrated in this way up to a distance of 30-40 kilometers in a few hours. More recent general comments about this region can be found in Middleton and Middleton (2002, 2003).

Fig. 1: Rocky road between Toliara and Manamby, Madagascar. Photo by Verne F.H. Simons.

Ankilitelo Cave
The richest site from which we have collected specimens in the years between 1994 and 2003 is Ankilitelo, or the cave “at the three Kili trees”, the deepest known cave in Madagascar. Ankilitelo is located at S 22° 54.819’ – E 43° 52.610’ (UTM coordinates 38 K 0384818, 7465599, datum WGS 84), and its position is indicated on a map (Fig. 2) in Jernvall et al. (2003). This pit cave is over 230 meters (754 ft) deep, and requires an initial controlled rope descent of over 145 meters (475 ft) straight down (Fig. 2).

That means descending down a rope like a spider for several minutes every morning, and climbing back out towards the end of the day loaded with the fossil bounty. At the bottom of this shaft at the entrance of the cave is a long sloping surface where many amazing subfossil discoveries have been made over the years. This cave was originally described after an expedition to the Mikoboka Plateau by a French speleological expedition by the Club Martel of Nice, France that surveyed the region beginning in September 1985. It was identified as Cave 28 of their survey and called by them “Aven
des Perroquets" or Kints’ia’ny Sihothy. A partial diagram of this Cave 28, drawn by J.-C. Peyre, was published in Peyre (1986). No subfossil remains were reported by the French cavers, but one of us (E.L.S.) realized that this pit or "gouffre" (French for abyss) cave was a natural trap that should have functioned as a collector of animal life similar to that of the Natural Trap Cave in the Pryor Mountains of Wyoming (see Martin and Gilbert 1978, 1984). The villagers of nearby Manamby told us that this cave was called Ankilitelo when we began work there in 1994 – they were unfamiliar with the names used by the French speleologists. After professional caver-collectors descended in that season the cave was documented as being very rich in subfossils. Most of the subfossils recovered come from the bottom of the shaft but are also scattered down an immense slope below this point. Figure 3 is a time-lapse photograph of this extensive surface in the interior of the cave. The lower reaches of Ankilitelo (Fig. 2) apparently do not contain subfossils.

The Ankilitelo fauna
The subfossil fauna of this gouffre cave is very diversified having yielded many birds, including *Aepyornis* eggshell fragments, herpetofauna, including chameleon and other lizard mandibles and bones, large and small tortoise shell fragments and a wide variety of micromammals including tenrecs, rodents, bats, several cheirogaleid primates, as well as *Lepilemur*, *Eulemur*, *Lemur*, *Propithecus*. Of special interest is the nearly complete skeleton of a large lemur-eating eagle (resembling genus *Stephanoaetus*). Even though being very large, it has short wings (useful for maneuvering through forest) combined with massive muscular legs and feet (for grasping). These morphological adaptations fit perfectly with an ability to prey on arboreal mammals, such as Madagascar lemurs (Rasmussen and Simons in prep.). In addition to the above mentioned vertebrates there are remarkable remains of several giant subfossil lemurs. The most abundant of these is the sloth lemur *Palaeopropithecus ingens*, for which we have recovered a series of associated skeletal remains. One of the great unsolved mysteries about *Palaeopropithecus* is the shape and function of the carpal and tarsal bones, quite unlike those of any extant primate. Some of these podial bones from Ankilitelo have been analyzed in Hamrick et al. (2000) and others are under study. Because of the abundance of this species at Ankilitelo, we believe that we have now identified all but one of these peculiar bones. Other giant lemurs found at this site include *Megaladapis* and *Archaeolemur*. The thick deposits in the rubble pile allow for possible age differences for the subfossils, and the youngest date for *Palaeopropithecus* there (ca. 510 x 80 B.P., see Simons 1997) stresses the importance
of further dating, to determine if there are older components. Because the entrance pit of Ankilitelo is a straight shaft the subfossil fauna (animals or skeletal parts of animals) have collected at the bottom after falling in and have not been secondarily redistributed by water from various sources during different time periods. Care has been taken to separate the material on the surface of the mound from that buried deeper. Because this cave was formed by blocks of limestone debris falling both from the cave ceiling (and out of the shaft) no subfossils could have accumulated at all before the shaft broke through at the surface. Hence, the subfossils appear to represent a relatively limited period of time. Today a few shrubs and small trees surround the entrance located on a knoll in a grassland. It seems likely that before the local pastoralists began to fire these grasslands annually, the region around the entrance must have been heavily forested, as the surrounding hills and ridges are today. One can assume that arboreal lemurs would have been moving about in this forest. This would explain why so many large and perhaps clumsy primates (Palaeopropithecus) fell into this opening. A number of papers (see bibliography) have already been written or are being prepared on the larger species from this cave, and we plan to further clarify our understanding of the past habitat conditions as indicated by the associated microfauna. A brief primate faunal list from Ankilitelo has been published in Godfrey et al. (1997).

Comparison of present day mammalian microfaunas with those of the past (Ankilitelo) has important implications for understanding climatic change. One of us (K.M.M.), a Ph.D. candidate at Washington University, Saint Louis, is comparing present-day small mammals of southwestern Madagascar with the subfossil mammalian microfauna collected from Ankilitelo. Her work (recently funded by the National Science Foundation, Geological Society of America, and Sigma Xi) will attempt to develop a framework for reconstructing the environment of the giant subfossil lemurs in southwestern Madagascar. Through the study of microfaunal collections from the past 10 years of exploration of this region, we can begin to compare these smaller subfossils to the extant local microfauna. Research over the past two decades has greatly improved knowledge of the behavioral ecology of living Malagasy small vertebrates and provided current faunal lists for comparative ecological study. The subfossil microfaunas will establish a basis to measure the degree of environmental change between the past and present. We will be able to evaluate the habitat preferences and community ecology of the microfauna found in the upper surface layers of Ankilitelo to reconstruct past environmental conditions that suited the several giant lemurs with which the microfauna are stratigraphically associated. In consequence, we may find the cause or causes of the faunal disappearances in Madagascar. These extinctions, as in other parts of the world, have lead to the great debate: were the megaфаunal extinctions caused by humans or by climate change or by both? The evaluation of habitats in which they occurred helps understand the cause, or causes, of extinction of these giant vertebrate lemurs. Ankilitelo is unique in that several giant lemur genera (Palaeopropithecus, Me-

galadapis, and Archaeolemur) occur in association with abundant paleoecologically relevant small vertebrates. Muldoon’s project constitutes the first comprehensive comparison between subfossil and extant small vertebrate communities in Madagascar and hopefully will bear on hypotheses about megaфаunal extinction.

Acknowledgements
This is Duke University Primate Center Publication 792.

We would like to thank the following members of the several field crews at Ankilitelo. Mark Minton, Nancy Weaver, Don DeBlieux, D. Tab Rasmussen, Martin Gasser, Chris Hildreth, Steve Hardin, Karlin Meyers, Guy Hermas Randriatana, Germaine Raharirina, Florent Ravoavy, Lorent Rakotondramanga, Saminirina Rabenjarisoa, Farahanta Vololontsoa Randrianasolo, as well as others from the faculty and students at the Laboratoire de Département de Paléontologie et Anthropologie Biologique, Université d’Antananarivo, especially Drs. Armand Rasomiamanana and Gisle Randria for facilitating our fieldwork, and thanks also to the former department head, Madame Berthe Rakotosamimanana. For editorial comments on this manuscript, thanks are extended to Friderun Ankel-Simons. This research was supported by National Geographic Society Grant 7330-02 to Elwyn Simons, and National Science Foundation Awards DBS 9207084 and BCS 9630350, both to Elwyn Simons, by the Simons Family Foundation, and by gifts from Margot Marsh and Verna C. Simons.

References

Illegal rum production threatens health of lemur populations at Tsingy, eastern central Madagascar: Brief report and request for information

Mitchell T. Irwin
Interdepartmental Doctoral Program in Anthropological Sciences, Dept. of Anthropology, Stony Brook University, Stony Brook, NY, USA 11794-4364, mirwin@ic.sunysb.edu

Hasina Vololona Ravelomanantsoa
Département de Géographie, Faculté des Lettres et des Sciences Humaines, Université d’Antananarivo, Antananarivo 101, Madagascar, na1803@yahoo.fr

Introduction
Many of the pressures faced by lemur populations are global issues affecting primates worldwide. All human societies, to varying degrees, are converting land from natural states to modified food-producing states. This conversion of primary forest threatens biodiversity in rural populations throughout the world. The hunger of the developed world for tropical hardwood lumber has also reached across all continents.

In contrast, other human activities threatening forests are of a more local character and for this reason are more difficult to predict or detect. However, these locally unique threats can be equally or more detrimental than more commonly-recognized threats.

Rum is a very important part of Malagasy rural and urban culture. Although commercially-produced rum ("toaka") is available, most consumers buy the illegal "toaka gasy" produced by individuals in rural areas. Toaka gasy is produced by various degrees throughout the island but eastern central Madagascar is known as an area of very high production (Irwin 2000 et al.; S. Lehman pers. comm.), and rum from this region has a strong reputation for good quality and taste. Similar larger-scale production is known from the Masoala peninsula (Vasey 1997, pers. comm.). At Tsingy, very little of the locally-produced rum is consumed locally; large quantities of toaka gasy are sold to wholesalers who transport it to Antananarivo and other urban centres for sale. Entering the commercial scale of production is potentially dangerous in that any ecological and environmental impacts of this activity will be amplified. Here we provide a preliminary report of the effects of illegal rum production on the rainforest community at Tsingy, eastern Central Madagascar. Our results suggest that this activity constitutes a serious, but previously unrecognized, threat to the forest ecosystem.

Materials and Methods
MTI conducted botanical inventories and lemur censuses at Tsingy between June and October 2001, and studied the behavior and ecology of one lemur species, Propithecus diadema, from December 2002 to December 2003. HVR conducted socioeconomic surveys in several local villages in Tsingy commune during February and May 2003.

The Tsingy region (19°44’S, 47°48’E; 1400-1650 m asl) contains central domain high-altitude rainforest (Humbert and Cours-Darne 1965; DuPuy and Moat 1996). Although land-cover maps from the 1960’s indicate nearly continuous forest cover (FTM 1972), a satellite image from April 2000 shows that considerable deforestation and fragmentation has taken place, mostly in the western half of the forest corridor. In this area, forest exists as isolated and semi-isolated fragments surrounded by cultivated land, villages, and secondary vegetation dominated by two small woody shrubs: Dingadingambavy (Asteraceae: Psidia altissima) and Rambiaxina (Asteraceae: Helichrysum bracteiferum).

Results
Socioeconomics of rum production
Rum production is arguably the single most lucrative activity in the Tsingy region. Villagers cultivate rice, potatoes, sweet potatoes, corn, beans and taro, and keep relatively small numbers of cattle, pigs, chicken and ducks. However, the soils and local conditions are only marginally suited to agriculture, and failed rice harvests are common. We believe that many settlements would be unsustainable economically without the cash infusion that rum provides. From the villagers’ point of view, rum provides a “fallback” source of income that is more reliable than farming. The demand is constant, and rum producers from a radius of more than 15 km gather weekly at the “Toby Toaka” (rum market) in Tsingy, where wholesalers buy the rum in 20-litre "jerry cans".
The prices vary between 300 and 800 Ariary (approx. $0.25 to $0.67 USD) per litre. The minimum yearly production we encountered for one person was 401, and the maximum was 27901. This signifies an annual income supplement (assuming an average price of 550 Ariary per litre) of between 22,000 and 1,534,500 Ariary (approx. $18 to $1280 USD) per producer. This is a considerable amount given that Madagascar’s per capita GDP is estimated at $800 USD (CIA World Factbook 2004), and the average in rural areas is likely much lower.

Impact of rum production on forests
The impact of rum production on the forests at Tsingy is threefold. First, the cultivation of sugarcane leads to increased per capita demand for land conversion. Second, the distillation process requires large amounts of firewood, thus increasing the per capita demand for this limited resource. Finally, the distillation process requires the addition of “laro” (tree bark from particular species). It is unclear whether this bark is a necessary component of fermentation, as the producers contend, or whether it simply adds a desired flavor.
We found that only 5 species, all within the genus *Syzygium* (Myrtaceae), are used as laro at Tsinjoarivo. However, our botanical transects found that these trees were heavily exploited, and that this exploitation has caused a considerable loss of forest biomass. Within 61 botanical transects (10 x 100 m) at the fragmented forest site of Mahatsinjo, we found an average value of 108 dead *Syzygium* trees per hectare. Here we count both trees that are stripped but still standing (this "girdling" leads to tree death) and trees that are cut and stripped (these have the potential to regrow, but regrowth has not yet been observed). These dead *Syzygium* trees accounted for, on average, 1.54 m² per hectare of basal area (counting stems > 5 cm dbh), or more than 5% of the living total. Laro extraction therefore: (1) alters the physical structure of the forest, creating light gaps which promote changes in local temperature and humidity, and (2) alter the forest’s species composition by selectively removing *Syzygium* species. Behavioral studies are revealing that the trees being lost are in fact important food resources for lemurs. Wild sifakas (*Propithecus diadema*) at Tsinjoarivo eat leaves of all five *Syzygium* species, and were also observed to eat the fruit or seeds of the two *Syzygium* species observed to fruit during 2003 (Irwin, unpublished data). This genus is also known to be eaten by sifakas at other sites (Mantadia: Powzyk & Mowry 2003; Ranomafana: Hemingway 1995, P. Wright pers. comm.), as well as by *Eulemur fulus rufus* and *Eulemur rubriventer* at Ranomafana (Overdorff 1995), and by *Varecia variegata variegata* at Manombo (Ratsimbazafy 2002), Ranomafana (Balco 1998) and Nosy Mangabe (Simons Morland 1991). None of the 37 forest fragments from which our botanical data were collected host all nine local lemur species: species richness varies from 0 to 7, and both *Eulemur fulus* and *E. rubriventer* were absent from all surveyed fragments (Irwin unpub. data). Along with fragmentation effects, and low-level extraction of other tree species, we hypothesize that rum-related extraction has contributed to these local extinctions.

Discussion

In light of the data presented here, it is important to realize that Malagasy forests which are otherwise protected or relatively undisturbed may suffer disproportionately in areas where large-scale rum production exists. Rum-related extraction greatly alters the forest’s structure and composition, and removes species known to be lemur food resources. Unfortunately, conservation efforts in Madagascar cannot “write off” forests close to human habitation, as natural forests sufficiently remote from human settlement are too few. We must be able to protect lemur populations within walking distance of villages, by identifying and mediating the effects of culturally-based practices such as rum production. Rum production and consumption are so deeply ingrained in Malagasy culture that any attempts to remove them will likely fail. Instead, we recommend investigating alternative production methods designed to have lessened ecological impacts.

In order to begin assembling a broader geographic perspective of this problem for a manuscript currently in preparation, we invite any researchers who have encountered illegal rum production in other areas of Madagascar to kindly contact one of us. In particular, the following information would be most useful: (1) sugar source (e.g. sugar cane), (2) plant species used for “laro”, (3) some estimate of the volume of production (i.e. for local consumption vs. for export), and (4) any botanical data or counts measuring the impact on forest structure and composition.

Acknowledgements

We thank the Government of the Democratic Republic of Madagascar and the Direction des Eaux et Forêts (DEF) for research authorization (77-DGDRF/SCB, 115-MEF/SG/DGDF/DADF/SCBF, and 133-MINENVEF/SG/DGDF/DPB/SCBLF). For research facilitation we thank P. Wright, B. Andriamihaja, and staff of the Malagasy Institute for the Conservation of Tropical Environments (MICET Antanarivo), and the Institute for the Conservation of Tropical Environments (ICTE Stony Brook: L. Donovan, F. van Berkum). This research was funded by the Margot Marsh Biodiversity Foundation and Primate Conservation, Inc. We thank collaborators Jean-Luc Raharison and Karen Samonds for assistance in the field and with manuscript preparation. For assistance with data collection, we are greatly appreciative to research assistants Edmond Razandrakoto, Harison (Ranaivo) Rakotoarimanana, Edmond (Gilbert) Ranaivoson, Justin (Lenala) Rakotofanalana, Charles Randriaarimanana, Paul Rasabo, and Jean-Claude (LeJean) Rakotoniaina.

References

Humbert, H.; Cours-Darne, G. 1965. Carte internationale du tapis vegetal et des conditions écologiques. 3 coupures au 1/1,000,000 de Madagascar. Travaux de la Section Scientifique et Technique de l’Institut Français de Pondichéry (hors série).

Limites de la zone de répartition de Propithecus diadema diadema et Propithecus diadema edwardsi

Volasoa Nicole Andriaholinirina
Université d’Antananarivo, Faculté des Sciences, Département de Paléontologie et d’Anthropologie biologique, B.P. 906, Antananarivo 101, Madagascar; nicole.ludes@hetcourrier.com

Joseph Clément Rabarivola
Université de Mahajanga, Faculté des Sciences, Département de Biologie Animale, B.P. 339, Mahajanga 401, Madagascar; cjrabary@hotmail.com

Yves Rumpler
Université Louis Pasteur, Faculté de Médecine, Institut d’Embryologie, EA3428, 11 rue Humann, 67085 Strasbourg cedex, France.

Key words: Propithecus diadema, aire de répartition, Madagascar.

Introduction
La systématique et la répartition des Propithécus diadémés sont encore un sujet à discussion (Petter et Petter-Rousseaux 1979; Pastorini et al. 2001), particulièrement la limite entre les deux sous-espèces Propithecus diadema diadema et Propithecus diadema edwardsi (Petter et al. 1977; Tattersall 1982). Pour tenter de préciser la limite entre ces deux sous-espèces, nous avons fait des missions de prospection, et des missions de capture avec des prélèvements d’échantillons sur l’aire de répartition de ces deux sous-espèces. Les prélèvements étaient destinés à des études cytogénétiques et moléculaires à visée taxonomique. En effet, les études cytogénétiques ont déjà largement contribué à la détermination des espèces et sous-espèces des Propithécus (Rumpler et al. 2004).

Matériels et méthodes
Les zones prospectées sont représentées dans la Figure 1 et les sites ont été numérotés de 1 à 6. Depuis les régions de Anosibe An’ala et de Antanifotsy, tous les déplacements ont été faits à pied, représentant des marches de 2 ou 3 jours pour aller d’un site à l’autre. Tout le long des trajets, nous avons questionné les villageois pour obtenir des renseignements forestiers persistants.

Le suivi des animaux a été fait soit à l’aide d’un fusil air comprimé en utilisant 0,5 ml d’Imalgène. Lorsque l’animal était complètement endormi sous l’effet de l’anesthésie, il a été recueilli prudemment dans un sac de riz. Un petit fragment d’oreille ou d’articulation a été soumis à l’autorisation d’exportation CITES. Lorsqu’un Soit noir avec une petite tache brune sur le dos. Nos observations sur le site de capture.

Résultats
Les P. d. diadema de Maromizaha ont l’aspect morphologique classique, un corps de coloration jaune et gris clair et une tête blanche dont le dessus est gris clair (Fig. 2a). Par contre, la limite nord-ouest de la zone de répartition de Maromizaha et la limite sud n’est pas encore connue puisque des P. d. edwardsi ont été observés au Nord de la rivière Nosivolo. Pour les P. d. diadema, la limite sud n’est pas encore déterminée car aucun animal n’a été observé entre les sites de Maromizaha et la rivière Mangoro. Une nouvelle mission est en cours pour explorer la zone située entre Anosiben’Ifody et la rivière Nosivolo.

Remerciements
Les auteurs remercient la Direction des Eaux et Forêts, l’Association nationale pour la gestion des Aires Protégées (ANGAP) d’Antananarivo pour les autorisations de capture et les permis d’exportation (CITES), l’Association Européenne pour l’Elevage et de Conservation des Lémuriens (ANAA) pour l’aide financière et leur soutien, Madame Lavaux Marguerite pour la correction et la mise en forme du manuscrit. Nous remercions également le département de Paléontologie et d’Anthropologie Biologique (Université d’Antananarivo), les personnels de l’Institut Pasteur de Madagascar, les membres du GERF, Mr Jean-Luc Fauvisser et Mr Marcel Hauvry, ainsi que tous les guides pour leur assistance durant les différentes missions.

Objectifs

S’il s’agit de faire l’inventaire des lémuriens diurnes de ces 3 sites et de savoir s’il existe des pressions qui les menacent et qui peuvent entrainer leur disparition, dans ces forêts qui ne sont pas du tout protégées par aucune réglementation du fait qu’elles ne se trouvent pas dans les Aires Protégées toutes proches, notamment la Réserve Spéciale d’Analamazava et le Parc National de Mantadia. Or, dans les conclusions de l’Atelier sur l’établissement des priorités de conservation à Madagascar en 1995, l’impact le plus spectaculaire de cet Atelier a été de signaler que certains secteurs prioritaires sur le plan de la biodiversité n’étaient pas pris en compte par le système des aires protégées, ce qui a conduit à privilégier les forêts situées en dehors des limites des parcs et réserves et notamment les forêts à usage multiple telles que les forêts jouant le rôle de corridor écologique forestier entre deux aires protégées et qui sont sujettes à une destruction certaine (Rakotosamimanana et Ganzhorn 1995; Ganzhorn et al. 1997).

Les objectifs de l’étude étaient d’identifier les espèces de lémuriens qui habitent ces forêts non protégées et grâce à la densité des espèces de lémuriens inventoriées, de comprendre la situation où se trouve chaque espèce et l’identification des pressions qui les menacent. Puis grâce à l’étude des corrélations, nous identifions les raisons possibles qui sont à l’origine de la disparition de ces espèces. Enfin, grâce aux comparaisons avec les autres sites proches de ces forêts, nous apprécions le statut de conservation de chacune de ces espèces inventoriées.

Sites d’étude

Les deux forêts étaient divisées en 3 sites: le site d’Ambato, le site de Ouest-Moramizaha et le site de Est-Moramizaha (GERP, CIMAD, 2003). Le site d’Ambato a une superficie...
totale de 494 270 ha (altitude: 786 – 1023 m; 18° 53,0' au 18° 53,9' S, 48° 29,7' au 48° 30,4' E). Le site Ouest-Maromizaha a une superficie totale de 233 938 ha (altitude de 896 – 1213 m; 18° 57,5' au 18° 58,7' S, 48° 27,1' au 48° 27,7' E), et le site de Est-Maromizaha a une superficie totale de 318 250 ha (cam- pement: altitude: 1224; 18° 58,4' S, 48° 28,3' E). Les super- ficies ont été obtenues en utilisant le logiciel ArcView.

Méthodologie

L'inventaire des lémuriens diurnes dans ces 3 sites a été effectuée par utilisation des transects tracés selon la métho- dologie de transects (ex. Ganzhorn 1994; Schmid 2000). Il y a eu donc comptage des formes rencontrées le long des transects. Les autres endroits en dehors des transects ont été également visités afin de faire un recensement aléatoire basé sur la présence ou l'absence des espèces de lémuriens sur chaque site. L'utilisation de cette méthode des transects a permis de calculer la superficie des animaux recensés au km² et que l'on a rencontré le long des transects grâce à la formule: D= N/2 × w × L où N= nombre d'individus rencontrés, L= longueur du transect parcouru 2 fois par jour pendant le nombre de jours d'observations, w= la distance perpendiculaire de l'animal par rapport au transect et D= la densité relative au km². L'étude des pressions se fait (1). Par la méthode des transects: on note toutes les traces laissées par le passage de l'Homme et que l'on rencontre le long des transects; (2) Par l'étude de la végétation qui caractérise le site dans un habi- tat au sommet, mis-versant et au bas-versant, donc consti- tution de 3 plots, et ce, en vue d'apprécier les traces des exploitations forestières qui ont été effectuées longtemps avant le passage des observateurs actuels et définir ainsi les différents types de form- mations végétales qui ont caractérisé le site: c'est donc une évaluation globale des informations sur la situation de la forêt et l'identification des pressions qui ont pesé sur la forêt et sur les lémuriens qui y habitent et qui se nourrissent de ces ar- bres de la forêt; (3). Des enquêtes utilisant

la Méthode Accélérée de Recherche Participative (MARP): elles sont effectuées dans les villages environnant la forêt au niveau des populations humaines, ce qui permet une éva- luation des données de base: les données collectées ont été surtout axées sur l'exploitation forestière, à savoir l'exploitation des bois d'œuvre et des plantes ornementales, l'exploitation des produits forestiers destinés à l'alimenta- tion, la chasse aux lémuriens et aux autres animaux de la forêt; (4) L'utilisation des méthodes statistiques pour les comparaisons et l'étude des corrélations entre la densité rel- ative de ces espèces et les menaces et pressions identifiées – Test du X², Test de Spearman, Analyse de Covariance sur le produit de 2 écarts-type (Labrousse 1977; Brower et al. 1990; Jolicoeur 1991; présentés dans le rapport du GERP, CIMAD 2003). Seulement les résultats des analyse de cova- riance sur le produit de 2 écarts-type (Jolicoeur 1991) sont présentés dans cet article.

Résultats

Au cours de la mission de terrain dans la forêt d’Ambato et la forêt de Maromizaha trois sites ont été choisis, 13 transects tracés, 563 heures de travaux (en temps réel), 254 suivis et 288,6 kilomètres de parcours dont 30 % dans le site d’Amb- bato, 41% dans le site de W- Maromizaha et 29 % dans le site de Est Maromizaha (Tableau 1).

Tableau 1: Caractéristiques des travaux de terrain.

<table>
<thead>
<tr>
<th>Site</th>
<th>Nb de transects</th>
<th>Nb d’Heures (temps réel)</th>
<th>Nb Suivis</th>
<th>Nb de km parcourus pendant les transects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambato</td>
<td>6</td>
<td>255,5</td>
<td>132</td>
<td>86,1</td>
</tr>
<tr>
<td>W- Maromizaha</td>
<td>4</td>
<td>197,5</td>
<td>80</td>
<td>118,1</td>
</tr>
<tr>
<td>E- Maromizaha</td>
<td>3</td>
<td>140,0</td>
<td>42</td>
<td>84,0</td>
</tr>
<tr>
<td>Total</td>
<td>13</td>
<td>363,0</td>
<td>254</td>
<td>288,2</td>
</tr>
</tbody>
</table>
espèces cathémérales, à savoir Eulemur f. fulvus (Varika Mavo) et Hapalemur g. griseus (Kotrika).

Dans le site de Est-Maromizaha, nous avons rencontré des formes que nous avons qualifiées de "nouvelles". En effet, la bibliographie n'en a jamais parlé pour ce qui concerne les forêts de cette région du Mangoro. Il s'agit de 1) Hapalemur cf simus (?), forme plus grande que Hapalemur g. griseus avec le même aspect que Hapalemur de Ranomafana-Ihana-diana mais présentant une grande partie de son dos de couleur rose. 2) Hapalemur de grande taille, tout à fait différent de Hapalemur g. griseus qui, lui, est de petite taille. Enfin, nous avons constaté la décoloration du pelage de certaines formes de lémuriens, à savoir 1) Indri indri qui présente un dos, des avant-bras et des cuisses de couleur grise et non noire. D'ailleurs, les villageois les appellent des "Babakoto Fotsy" (Fotsy signifie Blanc), l'autre plus sombre aux mêmes endroits étant dénommé "Babakoto Mara" ou "Babakoto Sada" (Mara ou Sada signifient Noir et Blanc).

2) Varecia v. variegata qui présente une variante avec un pelage blanc sur tout le dos; seule la partie antérieure de son corps est sombre ainsi que la queue. Il semble qu'il s'agisse de la variante V. v. variegata editorum (Mittermeier et al. 1994). 3) Hapalemur g. griseus qui présente, lui aussi, une variante de même taille que H. g. griseus mais dont le pelage ventral est blanc et le pelage dorsal gris cendré tendant vers le blanc (Tableau 2).

Tableau 2: Formes de lémuriens diurnes observé dans les 3 sites. Les chiffres sont les nombres des individus vus pendant les suivis.

<table>
<thead>
<tr>
<th></th>
<th>I.i.</th>
<th>P.d.d.</th>
<th>E.f.f.</th>
<th>E.r.</th>
<th>H.g.g.</th>
<th>H.s.?</th>
<th>H.sp</th>
<th>V.V.T</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambato</td>
<td>63</td>
<td>19</td>
<td>12</td>
<td>3</td>
<td>9</td>
<td>2</td>
<td></td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>W-Maro</td>
<td>56</td>
<td>27</td>
<td>18</td>
<td>5</td>
<td>14</td>
<td>12</td>
<td></td>
<td>132</td>
<td></td>
</tr>
<tr>
<td>E-Maro</td>
<td>18</td>
<td>20</td>
<td>17</td>
<td>12</td>
<td>17</td>
<td>4</td>
<td>3</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>137</td>
<td>66</td>
<td>47</td>
<td>20</td>
<td>40</td>
<td>4</td>
<td>3</td>
<td>16</td>
<td>333</td>
</tr>
</tbody>
</table>

A titre de comparaison, disons que la Réserve Spéciale d'Analamazaotra toute proche, en face de Maromizaha, ne renferme que 4 espèces de lémuriens diurnes dont Indri indri et Eulemur rubriventer strictement diurnes et Eulemur f. fulvus et Hapalemur g. griseus cathémérales. Propithecus d. diadema et Varecia v. variegata ne se rencontrent plus dans cette Réserve (ANGAP 1997-2001; Mege 2000-2001; Tableau 3).

La densité relative (individus par km²) de chaque espèce dans les sites étudiés est présente dans le Tableau 3. Quand on compare les densités relatives de chaque espèce des 3 sites étudiés à celle de la Réserve Spéciale d'Analamazaotra (aire protégée), elles sont nettement moindres, ce qui est compréhensible du fait que les forêts d'Ambato et de Maromizaha sont des forêts naturelles, sans aucune protection alors que Analamazaotra a un statut de Réserve Spéciale, donc relativement protégée. Quand on les compare à celle du Parc National de Mantadia, les densités relatives y sont beaucoup plus élevées pour chaque espèce que pour celles des 3 sites étudiés. N'oublions pas que ces 3 sites sont beaucoup plus accessibles par leur rapprochement des agglomérations comme Moramanga – chef-lieu de sous-préfecture donc lieu de passage. Et la Route Nationale n° 2 longe les deux sites de Maromizaha (Fig. 1).

Pour les 3 sites étudiés, la densité relative de chaque espèce est nettement plus grande pour Indri indri et pour Propithecus d. diadema pour le site d'Ambato que pour le site d'Ouest-Maromizaha. D'ailleurs, c'est ce site de Ouest-Maromizaha qui semble avoir besoin d'un suivi de conservation assez conséquent car les densités relatives de P. d. diadema, de E. f. fulvus et de E. rubriventer y sont les plus petites par rapport à celles des deux autres sites. D'ailleurs l'attention est attirée par la densité relative de V. v. variegata qui, dans les 3 sites est très petite. Donc cette espèce devient rare et son effort d'échantillonnage le confirme: elle n’apparaît au cours des suivis des transects que très tard, seulement vers le 4ème ou le 5ème jour d’observation. Elle a donc besoin d’une action de conservation dans ces sites, d’autant qu’elle a déjà disparu dans la Réserve Spéciale d’Analamazaotra et très rare dans le Corridor Mantadia-Zahamena (Schmid 2000; Andriamasimanana et al. 2001).

Les pressions humaines

Les pressions humaines identifiées par la méthode des transects et par les enquêtes MARP sont les pièces dont la chasse, les arbres coupés, les fangeons coupés, le nombre de villages environnants et la distance moyenne entre la forêt et les villages (Tableau 4).

Les pressions humaines se font beaucoup sentir particulièrement dans les 2 sites de W-Maromizaha et d’Ambato. En effet, c’est dans ces deux sites que l’on rencontre le plus les traces laissées par l’Homme au cours de son passage, comme les pièces à lémuriens (Hetim-barika et Manitranalana à Ambato, Lalo-Varika à W-Maromizaha) les arbres coupés, les fangeons coupés et laissés sur place... D’ailleurs les villages sont très proches de la forêt (600 m de distance moyenne de la forêt W-Maromizaha pour les 6 villages de Maromizaha et moins d’un km pour les 6 villages environnant la forêt d’Ambato). Il est à remarquer que pour le site de Est-Maromizaha, nous n’avons pas trouvé de traces laissées par l’Homme au cours de son passage. C’est pourquoi, nous avons adopté la méthode indirecte par inventaire des espèces végétales pour identifier l’action des pressions humaines dans ce site. Dans la Réserve Spéciale d’Analamazaotra, les Agents forestiers ont trouvé également des traces d’arbres

Tableau 3: Densité relative (ind./km²) de chaque espèce dans 5 sites (3 sites étudiés plus R.S. Analamazaotra et P.N. Mantadia).

<table>
<thead>
<tr>
<th></th>
<th>I.i.</th>
<th>P.d.d.</th>
<th>E.f.f.</th>
<th>E.r.</th>
<th>H.g.g.</th>
<th>H.s.?</th>
<th>H.sp</th>
<th>V.V.T</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambato</td>
<td>8,30</td>
<td>7,88</td>
<td>2,53</td>
<td>3,48</td>
<td>3,05</td>
<td></td>
<td></td>
<td></td>
<td>1,45</td>
</tr>
<tr>
<td>W-Maro</td>
<td>7,57</td>
<td>3,74</td>
<td>5,27</td>
<td>0,52</td>
<td>8,75</td>
<td></td>
<td></td>
<td></td>
<td>1,11</td>
</tr>
<tr>
<td>E-Maro</td>
<td>3,32</td>
<td>10,75</td>
<td>8,93</td>
<td>6,28</td>
<td>7,91</td>
<td></td>
<td></td>
<td></td>
<td>1,98</td>
</tr>
<tr>
<td>#PN Mantadia</td>
<td>22,54</td>
<td>17,07</td>
<td>6,40</td>
<td>5,69</td>
<td>10,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#RS Analamazaotra</td>
<td>14,69</td>
<td>29,14</td>
<td>7,04</td>
<td>18,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 4: L’intensité des pressions humaines dans les 5 sites.

<table>
<thead>
<tr>
<th></th>
<th>Pièges (no/km²)</th>
<th>Arbres coupés (no/km²)</th>
<th>Fangeons coupés (no/km²)</th>
<th>Nb. Villages autour de site</th>
<th>Distance moyenne entre les villages et la forêt (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambato</td>
<td>185,61</td>
<td>17,67</td>
<td>606,31</td>
<td>6</td>
<td>0,92</td>
</tr>
<tr>
<td>W-Maromizaha</td>
<td>22,13</td>
<td>18,35</td>
<td>6,49</td>
<td>6</td>
<td>0,60</td>
</tr>
<tr>
<td>E-Maromizaha</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0,93</td>
</tr>
<tr>
<td>Mantadia-Zahamena (Corridor)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>0,30</td>
</tr>
<tr>
<td>RS Analamazaotra</td>
<td>0,62</td>
<td>1,98</td>
<td>0,25</td>
<td>6</td>
<td>0,30</td>
</tr>
</tbody>
</table>
coupés, de pièges, de fangeons coupés et laissés sur place mais c’était au moment de la crise 2001-2002 où les contrôles étaient difficiles et ces traces n’étaient pas nombreuses par rapport à celles de W-Maromizaha et surtout d’Ambato.

L’étude de la végétation dans certaines parties des transects du site Est-Maromizaha par des inventaires dendrométriques (étude du Diamètre à Hauteur de Poitrine – DBH) et par des inventaires floristiques a permis de connaître l’action des pressions humaines indirectement dans l’ancienne forêt de Maromizaha. En effet, en étudiant les espèces dans les 3 plots décrits plus haut dans la Méthodologie, les espèces, exploitées à l’époque coloniale par la Société Grande Ile de 1940 à 1958, n’existent plus actuellement que sous forme de petites plantes à DBH < 2,5 cm qui constituent la régénération de ces grands arbres d’antan, et que l’on a recueillis dans les 3 plots. Il y a donc plus de forêt dense humide sempervirente (FDHS) digne de ce nom dans Est-Maromizaha. C’est pourquoi, nous n’y avons pas rencontré de traces d’arbres coupés ni de fangeons laissés sur place car il n’y a plus de grands arbres à exploiter: tout a été rasé. Actuellement la forêt se régenère et cherche sa stabilité et de ce fait, il s’avère qu’une nécessité de protection de ce site est une Haute Priorité.

Ainsi, les lémuriens qui choisissent leurs supports dans cette végétation restante sont en grand danger de disparaitre, s’il y a un tant soit peu destruction de la forêt et en l’état donné que la forêt future est en train de se régénérer actuellement. D’où un besoin urgent de la conservation de ce site.

Corrélations entre les pressions humaines et l’évolution de la densité relative des lémuriens diurnes dans les sites étudiés.

L’étude de l’Analyse de Covariance sur le Produit des 2 écarts-type a permis d’apprécier les corrélations entre pressions humaines et la densité relative de chaque espèce de lémurien des sites étudiés (Tableau 5). Sur la base des analyses effectuées et résumées dans le Tableau 5 nous posons la question: “Quelle espèce de lémuriens montre-t-elle le plus de corrélations entre sa densité au km² et les pressions qui pèsent sur elle dans les trois sites?” La synthèse est présentée dans le Tableau 6. Il faut d’abord noter que les 6 espèces, dans les 3 sites considérés ensemble, subissent toutes l’intensité des pressions identifiées dans ces 3 sites. Mais elles se rangent de la façon suivante (cf. Tableaux 5 et 6).

Eulemur f. fulvus: 3 corrélations significatives négatives: l’une avec les pièges, la 2ème avec les coupes d’arbres, la 3ème avec les coupes de fangeons.

Hapalemur g. griseus: 2 corrélations significatives négatives avec les coupes de fangeons et avec les pièges.

Varecia v. variegata: 2 corrélations significatives l’une négative avec les coupes d’arbres et l’autre positive avec la distance des villages et la forêt.

Eulemur rubriventer: 2 corrélations significatives l’une négative avec les coupes d’arbres et l’autre positive avec le nombre de villages environnant la forêt.

<table>
<thead>
<tr>
<th>Espèce</th>
<th>Covariance/Produit de 2 Sigma</th>
<th>Types de Pressions</th>
<th>Interprétations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eulemur f. fulvus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 sites</td>
<td>-0,59</td>
<td>Pièges</td>
<td>Plus les pièges, plus la densité</td>
</tr>
<tr>
<td>5 sites</td>
<td>-0,59</td>
<td>Coupes d’arbres</td>
<td>Plus les coupes d’arbres, plus la densité</td>
</tr>
<tr>
<td>5 sites</td>
<td>-0,55</td>
<td>Coupes de fangeons</td>
<td>Plus les coupes de fangeons, plus la densité</td>
</tr>
<tr>
<td>Eulemur rubriventer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 sites</td>
<td>-0,70</td>
<td>Coupes d’arbres</td>
<td>Plus les coupes d’arbres, plus la densité</td>
</tr>
<tr>
<td>5 sites</td>
<td>0,59</td>
<td>Distance entre villages et forêt</td>
<td>Plus cette distance, plus la densité</td>
</tr>
<tr>
<td>Varecia v. variegata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 sites</td>
<td>-0,63</td>
<td>Nombre de villages environnant la forêt</td>
<td>Plus ce nombre, plus la densité</td>
</tr>
<tr>
<td>5 sites</td>
<td>0,78</td>
<td>Distance entre villages et forêt</td>
<td>Plus cette distance, plus la densité</td>
</tr>
<tr>
<td>5 sites</td>
<td>-0,62</td>
<td>Coupes d’arbres</td>
<td>Plus les coupes d’arbres, plus la densité</td>
</tr>
<tr>
<td>3 sites</td>
<td>0,54</td>
<td>Distance entre villages et forêt</td>
<td>Plus cette distance, plus la densité</td>
</tr>
<tr>
<td>Hapalemur g. griseus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 sites</td>
<td>-0,56</td>
<td>Pièges</td>
<td>Plus les pièges, plus la densité</td>
</tr>
<tr>
<td>5 sites</td>
<td>-0,54</td>
<td>Coupes de fangeons</td>
<td>Plus les coupes de fangeons, plus la densité</td>
</tr>
<tr>
<td>3 sites</td>
<td>-0,63</td>
<td>Distance des villages et forêt</td>
<td>Plus cette distance, plus la densité</td>
</tr>
<tr>
<td>Propithecus d. diadema</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 sites</td>
<td>-0,55</td>
<td>Coupes d’arbres</td>
<td>Plus les coupes d’arbres, plus la densité</td>
</tr>
<tr>
<td>3 sites</td>
<td>0,62</td>
<td>Distance des villages et forêt</td>
<td>Plus cette distance, plus la densité</td>
</tr>
<tr>
<td>Indri indri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 sites</td>
<td>0,66</td>
<td>Nombre de villages environnant la forêt</td>
<td>Plus ce nombre, plus la densité</td>
</tr>
<tr>
<td>3 sites</td>
<td>-0,68</td>
<td>Distance entre villages et forêt</td>
<td>Plus cette distance, plus la densité</td>
</tr>
<tr>
<td>3 sites</td>
<td>0,66</td>
<td>Coupes d’arbres</td>
<td>Plus les coupes d’arbres, plus la densité</td>
</tr>
</tbody>
</table>

Propithecus d. diadema: 2 corrélations significatives l’une négative avec les coupes d’arbres et l’autre positive avec le nombre des villages environnant la forêt.

Indri indri: 1 corrélation significative positive avec les coupes d’arbres

Tableau 6: Nombre des corrélations significatives (s) entre les densités relatives et les pressions humaines basé sur l’analyse des trois sites (voir Tableau 5).

<table>
<thead>
<tr>
<th>Espèce</th>
<th>Corr (+)</th>
<th>Corr (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eulemur f. fulvus</td>
<td>3s</td>
<td></td>
</tr>
<tr>
<td>Hapalemur g. griseus</td>
<td>1s</td>
<td>1s</td>
</tr>
<tr>
<td>Varecia v. variegata</td>
<td>1s</td>
<td>1s</td>
</tr>
<tr>
<td>Eulemur rubriventer</td>
<td>1s</td>
<td>1s</td>
</tr>
<tr>
<td>Propithecus d. diadema</td>
<td>1s</td>
<td>1s</td>
</tr>
<tr>
<td>Indri indri</td>
<td>1s</td>
<td></td>
</tr>
</tbody>
</table>
Parmis les pressions ce sont les coupes d’arbres qui agissent le plus, suivies de la pression exercée par la proximité des villages environnant la forêt, et enfin les coupes de fangeons et la pression de chasse agissent mais relativement moins sur l’ensemble des espèces de lémuriens diurnes des 3 sites considérés ensemble (Tableau 7).

Tableau 7: Nombre des corrélations significatives (s) entre les densités relatives des lémuriens et les pressions humaines basé sur l’analyse des trois sites.

<table>
<thead>
<tr>
<th>Type de pression</th>
<th>Corr (+)</th>
<th>Corr (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupes d’arbres</td>
<td>1s</td>
<td>4s</td>
</tr>
<tr>
<td>Proximité villages/oré</td>
<td>3s</td>
<td></td>
</tr>
<tr>
<td>Coupes de fangeons</td>
<td></td>
<td>2s</td>
</tr>
<tr>
<td>Pression de chasse</td>
<td></td>
<td>2s</td>
</tr>
</tbody>
</table>

Discussion

Ce sont donc les pressions humaines qui exercent un impact certain sur la densité relative des animaux et notamment des lémuriens qui vivent dans ces forêts naturelles du Mangoro et expliquent ainsi la diminution ou l’augmentation de leur nombre: en effet, chaque espèce a sa manière de réagir sur les flux de pression qui agissent fortement sur elle. Mais d’après les tableaux 5, 6 et 7, ce sont les corrélations négatives qui l’emportent (7 corrélations négatives significatives) par rapport aux corrélations positives (5 significatives).

Selon les enquêtes effectuées auprès des populations, les pièges installés en vue de la chasse des lémuriens (betimbarika, manitranala, sarbacanes) sont posés pendant toute l’année: ils sont toujours installés dans les espaces ouverts et les chasseurs, en les posant, tiennent compte de la direction prise par les lémuriens: pour ce faire, les chasseurs abattent de nombreux arbres pour obtenir une clairière de 30m environ de diamètre sur une ligne de crête et par où doivent passer obligatoirement les lémuriens et ils accrochent des appâts sur les pièges pour les attirer (goyaves, bananes très parfumées, etc.); certains même utilisent des fusils de chasse: il s’agit de chasseurs des grandes villes.

Quant aux coupes d’arbres, il s’agit de la coupe de bois d’œuvre qui se font pendant 2 mois, chaque année, au mois de juillet et au mois d’août quand il s’agit de bois de charpente pour les pilliers des habitations temporaires (les “petro”) des tavy ou tous les 7 ans ou tous les 20 ans quand il s’agit de bois de charpente pour les maisons en bois des villages soit occasionnellement quand il s’agit de fabriquer des cercueils et à chaque fois, c’est l’arbre entier que l’on coupe – Manilkara perrieri (Nato), Brachylaena merana (Mera- na), Harungana madagascariensis (Harongana), Xylopia buxifolia (Hazoambo), Canarium madagascariensis (Ramy), Ocotea laevis (Varongy), Eugenia sp. (Rotra) pour les bois de charpente et les pilliers des maisons; Apodiumon scintillans (Longotra), Tambourissa trimphylla (Ambora), pour les cercueils du fait qu’ils sont imputréscibles.

La coupe de fangeons ou rhizomes de fougères (Cyatheae sp.; Fanjana) se fait toute l’année, en forêt, et la vente des fangeons au bord de la RN-2 permet aux villageois de survivre. Or, ces fangeons sont les lieux de prédilection de certaines espèces de lémuriens telles Hapalemur g. griseus: au cours de grosses pluies, ils s’y réfugient.

Le nombre de villages environnant la forêt, quand il augmente, permet d’expliquer l’envahissement de la forêt par les populations villageoises en mal de nourriture ou voulant exploiter les arbres de la forêt, ce qui augmente les flux de pression sur les lémuriens qui y habitent. La distance des villages par rapport à la forêt est enfin un mesure qui représente bien les pressions sur les lémuriens; quand elle est grande, le flux de pression qu’elle exerce diminue, ce qui fait augmenter la densité relative des espèces de lémuriens de la forêt.

Ces chiffres des Tableaux 5 et 6 montrent que chaque espèce a sa manière de réagir sur les actions des pressions qui pèsent sur elle. A titre d’exemple, Varecia v. variegata semble être la plus rare dans les 3 sites étudiés, sa densité étant la plus faible (Tableau 2). Ainsi Varecia est sensible au stress (Ratsimbazafy et al. 2002); elle est plus à l’aise dans les milieux calmes, non perturbés, loin des coupes d’arbres et lorsque la distance augmente entre les villages et la forêt. Tout ceci explique sa petite densité dans ces 3 sites très perturbés par les pressions humaines. Propithecus d. diadema et Eulemur rubriventer semblent avoir, toutes les deux, les mêmes réactions vis-à-vis des coupes d’arbres et de la distance entre les villages et la forêt: leur densité relative diminue avec l’augmentation de ces pressions. Hapalemur g. griseus diminue sa densité relative avec l’augmentation des pièges et des coupes de fangeons: concernant particulièrement ces coupes de fangeons, quand elles sont élevées, Hapalemur est à découvrir dans son habitat et ne peut pas fuir devant les chasseurs qui le traquent. Quant à Indri indri, lui, il paraît beaucoup plus résistant: il subit le contre-coup des coupes d’arbres dans les 3 sites et le nombre de villages environnant la forêt et la proximité des villages dans les 5 sites considérés ensemble (Tableau 6), car il semble avoir une grande potentialité d’adaptation: il peut s’adapter davantage car il est protégé par l’Homme dans cette région du Mangoro: Indri augmente sa densité relative à cause de sa faculté d’adaptation: si les arbres sont coupés, par exemple, il peut utiliser les seuls arbres que l’Homme hésite à couper notamment Uapaca densifolia (parce que cet arbre possède un tronc court; et voilà pourquoi les paysans ne le coupent pas parce qu’il ne peut pas donner de belles et longues planches comme les paysans les aiment) et s’y adapte mais ne s’enfuit pas surtout qu’il est protégé par l’Homme dans cette région du Mangoro.

Conclusions

Les 6 espèces de lémuriens diurnes des forêts d’Ambato et de Maromizaha vivent sous le poids des pressions humaines exercées par les populations de la région du Mangoro, mais chacune a sa façon de subir ces pressions: la plus vulnérable semble être Eulemur f. fulvus, puis viennent Hapalemur g. griseus, Varecia v. variegata, Propithecus d. diadema et Eulemur rubriventer, les unes étant aussi vulnérables que les autres; enfin arrive Indri indri, l’animal-phare de Anda- sibe qui semble être la moins vulnérable des 6 espèces étudiées.

Les pressions les plus virulentes dans cette région, c’est la coupe des arbres de la forêt, car c’est l’arbre entier que l’on coupe; or l’arbre constitue l’habitat même de ces animaux et quand il est détruit, ces lémuriens n’arrivent plus à survivre s’ils ne peuvent pas s’adapter ou migrer ailleurs. Puis vient la proximité des villages par rapport à la forêt qui permet aux paysans ou encore aux exploitants forestiers d’envahir très vite ces forêts, et interviennent par leurs actions destructrices (pièges, coupes d’arbres, coupe de fangeons, etc.), ce qui laisse des traces indélébiles et nocifs sur les lémuriens. Et toutes ces pressions agissent discrètement et sûrement, ce qui explique la disparition progressive des lémuriens de cette région dans ces forêts naturelles à usage multiple si aucune action de conservation n’est entreprise.

Bibliographie

Lemur News Vol. 9, 2004 Page 23

Result

The Torotorofotsy marshes are a ca 1 100 ha wetland about 10 km northwest of Andasibe (Périnet) within the fokontany of Menalamba (18°52’S; 48°22’E). They are renowned for their unique wildlife such as the endemic frogs Mantella aurantiaca and M. crocea as well as for their avifaunal peculiarities including the Slender-billed Flufftail (Sarothrura watersi) and the Grey Emutail (Amphilais seebohmi), among others. Due to their biological importance, along with their potential as an essential water reservoir, the marshes and their catchment area have become a national conservation priority (Zimmermann and Andrianarivo 2000; Dolch 2003). Moreover, the forests of Torotorofotsy’s catchment area lie within the Mantadia-Zahamena corridor, conservation of which has been considered vital for several years (Ganzhorn et al. 1997). Yet, human encroachment and overexploitation of natural resources have resulted in the fragmentation of the original forest cover surrounding the marshes. At the same time, our knowledge of remaining primate populations within the forests is also fragmentary. We expected that the primate community at least in the larger forest fragments should closely resemble the one from Mantadia National Park holding six nocturnal species (Daubentonia madagascariensis, Microcebus rufus, Cheirogaleus major, Allocebus trichotis, Lepilemur microdon, Avahi laniger) and six diurnal species with Indri indri and Propithecus d. diadema representing the largest bodied recent lemur species. Additionally Varecia v. variegata, Eulemur rubriventer, Eulemur f. fulvus and Hapalemur g. griseus should occur sympatrically as they do in Mantadia.

In assisting the Ministère de l’Environnement et des Eaux et Forêts to get legal protection for Torotorofotsy under the Ramsar Convention on Wetlands, we conducted a rapid primate inventory in some of the rainforest fragments within the catchment area. This paper presents preliminary results on the primate communities and current status of the forests surrounding the Torotorofotsy marshes.

Methods

In order to assess both diurnal and nocturnal primate species richness, we set up two transect lines (ca 1 km each) that were walked from 6:30-8:30, from 15:30-17:30, and from 19:00-21:00, respectively. Transects were walked with an average speed of 1 km h⁻¹. We recorded visual lemur observations as well as vocalizations. Any other indirect evidence of lemur presence (e.g. characteristic bite marks on food plants) was also considered. Additionally, we interviewed local villagers and asked them about the primates of the area. The vernacular names for lemurs given by locals were verified by asking for physical descriptions and by confronting the villagers with color plates and photographs of the presumable primate species. Here we report the results from a survey (March 5-6, April 21-23, November 12-14 2003) of a 120 ha forest fragment bordering the Mokaranana wetlands (18°52’S; 48°22’E) that constitute the northern branch of the Torotorofotsy marshes.

The grandmother of all bamboo lemurs – evidence for the occurrence of Hapalemur simus in fragmented rainforest surrounding the Torotorofotsy marshes, Central Eastern Madagascar

Rainer Dolch1,4, Roland D. Hilgartner2, Jean-Noël Ndriamiary1, Herila Randriamahazo4

1 Environmental Consultant, Lot M233 Antanampasika, Andasibe 514, Madagascar
2 Deutsches Primatenzentrum (DPZ), Abt. Soziobiologie, Kellnerweg 4, 37077 Göttingen, Germany
3 Abteilung Experimentelle Ökologie, Universität Ulm, Germany
4 Association MITSINJO, Lot 104 A, Andasibe 514, Madagascar

Wildlife Conservation Society, BP 8500, Antananarivo 101, Madagascar
rdolch@gmx.de, hilgartner@dpz.gwdg.de, mitsinjo@hotmail.com, wcsmad@lts.de

The fragment shows typical signs of degradation. Parts that had previously been damaged by fire are characterized by the occurrence of small heliophilous tree species (Trema orientalis, Harungana madagascariensis). Much of the fragment is still exploited by selective logging for timber and firewood, resulting in a lack of medium sized or large trees. Furthermore lemur traps (snare traps), probably to capture Eulemur and other diurnal species, were found. Signs for exploitation of tubers were found in nearly all parts of the remaining forest. Where access is difficult, parts of the fragment are composed of degraded primary humid dense forest of mid-elevations where vast stands of Giant Bamboo (Cathariostachys madagascariensis) are a prominent feature.
Table 1 shows evidence for the occurrence of lemur species in the studied forest fragment. We can confirm the existence of five species of lemur (M. rufus, C. major, H. g. griseus, E. f. fulvus, A. laniger) by direct observation. A sixth species, I. indri, could be heard calling about twice a day, indicating the presence of at least one group within the fragment. We could not find evidence for A. trichotis. We neither found evidence for the nocturnal L. microdon, nor for the diurnal V. v. variegata and P. d. diadema that locals have claimed to see occasionally. However, results from the interviews with local people suggest the occurrence of another diurnal lemur species. This species is reportedly similar to the "Bokombolo" or "Kotrika" - the Grey Bamboo Lemur (Hapalemur g. griseus), but the locals clearly distinguished it from this species by its prominent ear tufts and significantly larger body size. Consequently, locals referred to this species as the "Reniben'ny Kotrika" - the grandmother of the Grey Bamboo Lemur. Using color plates and photographs of different lemur species, locals pointed at images of *Lemur* when asked to identify the "Reniben'ny Kotrika". They also claimed that the species in question especially frequents *Hapalemur* spp. when the animal is in short distance to the observer. To examine whether *Allocebus* is present within the fragment trapping is necessary.

Our results suggest the existence of a second *Hapalemur* species occurring sympatrically with *H. g. griseus*. Since studies have shown both a previously unexpected morphological (Sterling and Ramaroson 1996) and genetic (Fauser et al. 2002) diversity within the genus *Hapalemur*, we cannot exclude with absolute certainty the possibility of the "Reniben'ny Kotrika" being a sub-species or color morph of *H. g. griseus*. However, the interviews with locals as well as the characteristic bite marks on the culm pith of *Catharistachys madagascariensis* both strongly hint at the "Reniben'ny Kotrika" being identical with *H. simus*. While all *Hapalemur* species may consume the leaf bases and young shoots of *C. madagascariensis*, only *H. simus* is known to feed on the culm pith of Giant Bamboo, since only a species with adequate body size may exploit this food resource (Tan 1999).

H. simus is the most enigmatic of the three species of bamboo lemur. As subfossil evidence suggests, it has once been widespread and even occurred in areas where there is no rainforest left today (Mutschler and Tan 2003; Godfrey et al. 2004; Simons et al. 1995). Records from museum collections indicate that *H. simus* spanned almost the entire length of the eastern rainforest belt in the 19th century (Schwarz 1931). Now considered one of Madagascar's most threatened lemur species (Mittermeier et al. 1994), information about its last retreats is scarce. *Hapalemur simus* is found in Ranomafana and the forests adjacent to the south including Andringitra, where three *Hapalemur* species occur in sympatry (Mittermeier et al. 1994). Although there is no recent confirmation for claims that *H. simus* still occurs in other areas (Mutschler and Tan 2003), though *H. simus* may still occur in Mananara (Nicoll and Langrand 1989), indicating a very disjunct distribution.

If our assumption about the occurrence of *H. simus* can be confirmed, a gap will be filled in the known distribution area of the species. Notably, none of several surveys in fragmented and non-fragmented forest of the Mantadia-Zahamena corridor (Andriamasimanana et al. 2001; Schmid 2000) brought about evidence of the occurrence of any bam-

Table 1: Lemur species identified in surveyed forest fragment bordering Torotorofotsy as indicated by direct observation (do) vocalization (voc) bite marks (bm) interview (i).

<table>
<thead>
<tr>
<th>Species</th>
<th>Local name</th>
<th>do</th>
<th>voc</th>
<th>bm</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daubentonia madagascariensis</td>
<td>Hay-hay</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Microcebus rufus</td>
<td>Tsidy</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Cheirogaleus major</td>
<td>Tsidibe</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Allocebus trichotis</td>
<td>Tsidy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lepilemur microdon</td>
<td>Kotrika</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Eulemur rubriventer</td>
<td>Varimena</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eulemur f. fulcus</td>
<td>Gidro</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Hapalemur g. griseus</td>
<td>Kotrika;</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Bokombolo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hapalemur sp.</td>
<td>Renibe'ny</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Kotrika</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varecia variegata</td>
<td>Varikandana</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Awa hi laniger</td>
<td>Fotsife</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Indri indri</td>
<td>Babakoto</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Propithecus d. diadema</td>
<td>Simpona</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Although we never directly observed this second *Hapalemur* species, we nevertheless found numerous characteristic bite marks on apical parts of Giant Bamboo (Fig. 1). These parts were scattered over the forest floor and their inner pith had been removed. Bamboo stalks without apical parts were encountered regularly. The sound of splintering bamboo was heard on several occasions in the early morning, but no animals could be detected when approaching the area from where the noise came.

Discussion

Despite its proximity to Mantadia National Park, the surveyed forest fragment is characterized by an impoverished primate fauna when compared to that of Mantadia. Once sustaining a common pool of lemur species, the eastern rainforest belt has witnessed a process of local primate extinctions due to forest fragmentation. This may especially explain the absence of the large-bodied lemur species (*e.g.* *Propithecus d. diadema, Varecia variegata, Eulemur rubriventer*) that are known to be the first to become locally extinct as fragment size decreases (Ganzhorn et al. 2003). Hunting may have additionally contributed to their decline, since local hunters target the large-bodied species more often. The absence of any *Lepilemur* species may be due to the lack of large trees. Since smaller trees are less likely to possess a sufficient number of tree holes, a lack of suitable day shelters for *Lepilemur* may be a probable cause for its absence (Ganzhorn and Kappeler 1996; Zinner et al. 2003). We found no evidence for the presence of *A. trichotis*, however we cannot confirm the absence of this small nocturnal lemur as it is only possible to distinguish between *Microcebus* and *Allocebus* when the animal is in short distance to the observer. To examine whether *Allocebus* is present within the fragment trapping is necessary.

Fig. 1: Fresh bite mark on the apical part of the Giant Bamboo.
bo owl lemur other than *Hapalemur g. griseus*. Given the small scale of the forest fragment that we studied, the occurrence of more than one group of *H. simus* is very unlikely, bearing in mind that the well-studied group at Ranomafana National Park is known to occupy a home range of at least 62 ha (Tan 1999). It would therefore be very important to know if we only discovered an isolated relict population of *H. simus* doomed for extinction, or if there are other populations in other forest fragments close to this site (see Rakotosamimanana et al. 2004). Only in that case could we dare to hope to maintain a viable population and prevent the "Remiben'ny Kotrika" from totally disappearing from the rainforests of Central Eastern Madagascar.

We will continue monitoring the primate community in the rainforest fragments of the Torotorofoty catchment area. We are convinced that one has to increase efforts in achieving a complete inventory, including the knowledge and experience of local people. Integrating local people in lemur inventories will also raise awareness and thus finally help to conserve Madagascar’s primate species.

Acknowledgements
We would like to thank Sahondra Rabeishanaka (Ministère de l’Environnement et des Eaux et Forêts) for her unflagging support. In his function as Président du fokontany at Menalamba, Donné Randrianarison provided invaluable logistic assistance. We also thank Harald Schütz who accompanied two of us (RD & RH) on an earlier visit to the area. We thank the late Michel Kappeler and Didier Zinner for comments on an earlier version of this manuscript. Finally we especially thank Rafaly and Honrée for their extraordinary knowledge of the forests close to where they live. Misaoترا betsaka daholo!

References

Note sur les Lémuriens de Sahafiana

Felix Rakotondraparany
Département de Biologie Animale, Faculté des Sciences, Université d’Antananarivo, BP 906, Antananarivo 101, Madagascar

Un programme de préservation de la forêt de Sahafiana fut mis en place récemment. Les lémuriens sont, parmi les animaux, les joyaux de la biodiversité de Madagascar et peuvent esperer y trouver un futur meilleur. En effet, cette forêt de Sahafiana, est dans cette partie orientale de Madagascar la zone boisée naturelle de basse altitude qui a pu résister à la destruction des écosystèmes terrestres, lesquels ont ravagé la grande île depuis et qui n’ont laissé actuellement que quelques 20 % seulement du territoire forestier national (Green et Sussman 1990). L’objectif de l’étude était d’identifier les espèces de lémuriens qui habitent cette forêt de basse altitude.

Site d’étude et Méthodes d’Observation

Avec une surface de 1767 ha la forêt de Sahafiana est une zone d’essences naturelles de basse altitude (100-200 m; 18° 44’S; 48° 58’E) dans la Commune Rurale d’Anivorano-Est, Sous-Préfecture de Brickaville, dans la province de Toma-sina. C’est une zone qui se trouve à quelques dizaines de kilomètres des côtes et ne fait pas partie des forêts littorales. Elle devait certainement faire partie de ces zones de transi-
tion entre les zones côtières et la grande terre (Nicoll et Langrand 1989), mais parmi celles qui ont échappé aux dégradation forestières observées par Green et Sussman (1990).

Le campement se trouvait dans une zone de sable blanc provenant de la dégradation des roches qui constituent le substrat des collines environnantes. Ce site est en fait une enclave dénudée d’arbres de quelques dizaines d’hectares où ne poussent que des herbes assez denses et des Ravenala (Ravenala madagascariensis) et qui se trouve au milieu des collines dont le sommet peut atteindre jusqu’à 200m d’altitude.

Résultats
Les lémuriens, encore d’une diversité remarquable, sont parmi les créatures qui dynamisent cet écosystème. Sept espèces de lémuriens ont pu être identifiées. Ce sont: Indri indri, Eulemur rubriventer, Eulemur fulus fulus, Hapalemur griseus, Avahi laniger, Cheirogaleus major, Microcebus rufus.

Les espèces diurnes:
Ce sont des espèces d’assez grande taille. A moins qu’ils ne fassent l’objet de tabous (fady), ils ont été la cible des pratiques de chasse diverses, notamment, dans les parties de forêts qui ne sont pas protégées.

Indri indri (Indriidae)
C’est l’espèce la plus vocale dans cette forêt, émettant des cris caractéristiques de l’espèce d’ailleurs. Les premières vagues de cris des divers groupes commencent tôt vers 4h 30 le matin. Un groupe émet une vague de cris pendant au moins deux minutes. Puis les cris se relaient entre les groupes, peu à peu jusqu’au lever même du soleil. Puis les cris s’arrêtent pour ne reprendre que vers le milieu de la matinée. Les chants et cris matinaux s’entendent jusqu’à des kilomètres de la forêt. Leur existence donne déjà une certaine vivacité à cette forêt.

La densité des Indri dans cette forêt est assez élevée, comparée à celle d’Andasibe (moyenne altitude), ou celle que l’on peut trouver dans la forêt d’Anjozorobe (dans les haute platèaux à 100 km au Nord d’Antananarivo; Rakotondravony et Goodman 1998). En effet, juste dans les bois à portée de vue autour de notre campement, grâce à leurs cris tout simple, on peut enregistrer pas moins de 6 groupes. Cette abondance élevée est-elle, devenue en quelque sorte forcée, du fait de la réduction des superficies forestières disponibles? En effet, *Indri indri* a échappé, heureusement, aux chasses et braconnages qui se déroulaient auparavant dans cette région forestière; donc le nombre de groupes est resté, mais c’est la surface forestière disponible qui s’est amenuisée.

Nous avons pu localiser un groupe (trois individus, probablement un couple avec le jeune) après presque deux heures de recherche, après avoir entendu ses cris territoriaux matinaux. Le petit, déjà de la taille d’un adulte, s’est enfui très rapidement; suivi d’un autre adulte. Nous avons pu observer cet adulte juste à une dizaine de mètres au-dessus de nous pendant une vingtaine de minutes. Le pelage est à dominance de blanc dans le dos, noir vers la partie postérieure, de la même couleur que ceux que l’on voit à Andasibe, à la différence de ceux d’Anjozorobe où elle est plutôt à dominance de noir sur le dos, la tête et la cuisse.

Juste après avoir sauté sur un arbre, cet individu a déversé tout de suite un lot de petites boulettes de crottes. Celles-ci sont de petites boulettes cubiques verdâtres de 15mm au moins de côté, assez consistant au toucher, sans odeur remarquable, le moulage rend impossible l’identification des matières fécales. Nous avons pu trouver au moins une quinzaine de ces boulettes.

Eulemur rubriventer (Lemuridae)
A première vue, cette espèce n’est pas assez fréquente dans cette forêt. Un couple a été observé furtivement en pleine forêt, vers 11h 30 dans la matinée du 19/01/04. Le guide Mamy (Animateur Vulgarisateur) assurant le contrôle de cette zone me rapportait que ce couple a été le plus souvent la fois qu’il y fait des contrôles. Ce groupe n’est pas très haut dans les arbres (dans les 8 m de hauteur). Il nous a échappé très rapidement en fuyant vers le fond de la vallée. Il y a lieu de remarquer que le comportement de fuite rapide fait penser à une certaine méfiance vis-à-vis des passants chez le groupe. Toutefois la présence de *Eulemur rubriventer* est vraiment à la limite de la distribution altitudinale de cette espèce. En effet, elle ne devrait pas descendre si bas en altitude selon les recensements effectués auparavant (Garbutt 1999; Goodman et Ganzhorn 2004). Les groupes qui sont présents seraient donc les vestiges des groupes qui seraient venus des zones de basses altitudes de 800 m mais qui sont maintenant contraints d’y rester par suite des fragmentations des blocs forestiers des altitudes supérieures.

Eulemur fulus fulus (Lemuridae)
C’est une espèce assez caractéristique par les balancements fréquents de la queue quand ils voient quelqu’un dans la forêt. Ils se déplacent à plusieurs dans une forêt. Le 19/01/04, vers midi, au moins une dizaine d’individus a été observée prendre la fuite à cause de notre présence. Les individus étaient très haut (dans 15-20) dans les arbres. Ce groupe cohabite apparemment avec *E. rubriventer* mais les strates utilisées sont différentes. Un autre groupe de 7 individus a été observé le lendemain Dans un autre endroit, vers 9h 30 le matin. Nous avons pu observer, pendant quelques temps, le groupe en question qui semble cette fois-ci ne pas être inquiété de notre présence. Ils sont à 15-20 m au moins dans les arbres. En fait, quelques uns des individus ont été observés auparavant à une hauteur plus basse (3-5 m) mais lorsque nous sommes arrivés, ils se sont déplacés plus haut. Un gros mâle a pu être observé pendant quelques minutes. Près de lui, une femelle est avec un petit qui effectue des mouvements circulaires à ses cotés. Malgré cet effectif dans chaque groupe, cette espèce peut être la vicime de braconnage dans cette forêt. En effet, puisque ce sont des animaux qui marchent beaucoup plus qu’ils sautent dans les branchements, ces mœurs leur réservent quelques-uns du danger. Un système de vieux pièges pour ces animaux a été trouvé dans la forêt à quelques dizaines de mètres de la bordure. Ce système de pièges à
lémuriens est conçu de la manière suivante: une bande de forêt de 5 m de large et d’au moins 100 m de long a été abattue pour constituer une sorte d’allée. A travers cette bande, des piéges à lémuriens (une sorte de passerelle) ont été installés tous les 6 mètres. En fait, à plusieurs endroits, en bordure de forêt poussent des goyaviers (plantes introductrices poussant en bande) dont les fruits sont prises par E. fulvescens, surtout quand ils sont mûrs. Ces animaux devront passer obligatoirement par ces piéges s’ils veulent atteindre ces goyaviers.

Hapalemur griseus (Lemuridae)

Nous n’avons pas pu trouver des individus de cette espèce. Toutefois, l’espèce de lémurien que les gens appellent “Kotraika” dans la région, ne peut être que *Hapalemur griseus*. L’appellation ressemble d’ailleurs aux cris que font ces petits lémuriens. Les guides disent les trouver dans les endroits où poussent des bambous. Mais ces bambous ne sont qu’assez localement distribués dans cette zone forestière. Ils se trouvent plus particulièrement le long des vallées. Ici, les bambous ont plutôt tendance à être abondants dans les parties très dégradées de la forêt.

Les espèces nocturnes:

Les lémuriens nocturnes de Sahafiana qui ont été déterminés jusqu’ici sont:

Avahi laniger (Indriidae)

Cheirogaleus major (Cheirogaleidae)

Un individu a été observé très haut dans les arbres. Il était en mouvement lorsqu’on l’a surpris à cette hauteur. L’arbre où il se trouve est au moins à une dizaine de mètres de la piste. Quelquefois on entend également quelques cris de Cheirogale major loin dans la forêt. Il y a un moment sans bouger, puis il a disparu lentement dans les arbres, encore à cette hauteur.

Microcebus rufus (Cheirogaleidae)

Vers 22 heures de la nuit on a surpris un individu de cette petite espèce de quelques dizaines de grammes seulement à environ 5 m de hauteur, puis il a grimpé très rapidement en sautant de branche en branche jusqu’à une dizaine de mètres de hauteur. Cette scène d’observation n’a duré pour nous que quelques 7-8 minutes. Puis le petit lémurien a disparu dans le feuillage. On a pu quand même distinguer pendant un certain temps son pelage roussâtre sur le dos et plus clair au ventre. C’est un peu surprenant, quand même, que nous n’ayons pas pu en trouver auparavant sur notre parcours qu’à cette heure de la nuit, alors que nous avons commencé notre sortie nocturne vers 18h30.

Conclusion

La position géographique de la forêt de Sahafiana est en chevauchement entre les forêts littorales orientales de Madagascar et les forêts de basses altitudes. De ce fait elle sera très importante en terme de caractéristiques biologiques et écologiques d’un écosystème forestier, notamment sur les formes de transition entre ces deux types d’écosystèmes. Cette forêt de Sahafiana est de ce fait d’une valeur biologique et écologique très importante. Pour ce qui concerne les lémuriens, des études plus poussées (ne serait-ce qu’en terme de temps d’observation) sont encore souhaitables. Elles pourraient encore dévoiler l’existence d’autres espèces, par exemple le fameux aye-aye. Les chasses de certaines de ces espèces sont actuellement en passe d’être maîtrisées du fait de la mise en place d’un programme de conservation qui assurera un avenir prometteur non seulement aux espèces de faune et de flore dans ce merveilleux écosystème forestier mais aussi et surtout aux populations humaines environnantes. Ceci, grâce aux potentiels scientifiques qui demandent encore à être découverts mais aussi au potentiel touristique que réserver le milieu en raison de sa spécificité biologique et de sa situation géographique exceptionnelle.

Remerciements

Nos remerciements vont en premier lieu à l’endroit de Mr Joachym, Ingénieur des Eaux et Forêts Responsable en gestion et aménagement forestier, qui a apporté les appuis financiers nécessaires à la réalisation de la mission. Qu’ils reçoivent également nos remerciements cordiaux, les Agents vulgarisateurs et en même temps guides de la forêt de Sahafiana, en particulier RaMamy. Nous n’oublierons pas non plus, parmi tant d’autres, Papa Rasolo, notre chauffeur au cours de la mission.

Bibliographie

Contribution à l’étude des populations de Hapalemur aureus dans le couloir forestier Ranomafana - Andringitra

Daniel Rakotondravony*, Lantonirina Victoire Razafindramahatra

Département de Biologie Animale, Faculté des Sciences, Université d’Antananarivo, BP 906, Antananarivo, Madagascar;

* Auteur interlocuteur pour toutes les correspondances: drakotondravony@simicro.mg

Mots-clés: Hapalemur aureus, lémuriens, pressions humaines, conservation, couloir forestier Ranomafana – Andringitra

Hapalemur aureus (nom malgache: Varibolamena) est une espèce qui est classée comme gravement menacée (CR, CAMP 2001). Par rapport aux autres lémuriens vivant actuellement, l’aire de distribution de cet animal est très restreinte. Elle est limitée uniquement dans le bloc forestier...
comprenant les parcs de Ranomafana et d'Andringitra ainsi que le corridor qui les relie (Mittermeier et al. 1994; Sterling et Ramaroson 1996; Goodman et al. 2001) et possiblement vers le nord-est jusqu'au région de Betsakafandrika (Lehman et Wright 2000). Sa population subit actuellement une diminution causée d'abord par la destruction de son habitat. Cette menace s'accentue à cause des feux, des cultures sur brûlis de la fabrication de charbon et de l'exploitation des bambous (Meier et al. 1987).

Afin de permettre de prendre les mesures nécessaires pour prévenir de nouvelles extinctions d’autres espèces, nous voulons contribuer à l’étude des populations de Hapalemur aureus dans le corridor Ranomafana-Andringitra. L’objectif du présent travail est d’estimer l’effectif de la population de H. aureus et de connaître les différentes pressions que l’animal subit dans son milieu naturel. Tous ces objectifs sont visés afin d’établir un plan de conservation pour sauvegarder l’espèce en question.

Zone d’étude et sites inventoriés

L’étude a été effectuée dans le corridor forestier qui relie le Parc National (PN) de Ranomafana et le PN Andringitra (Fig. 1). Il est formé par une bande de forêt d’une longueur de 120 km. Ce corridor forestier s’étend entre les latitudes Sud de 21°17’ à 22°21’ et les longitudes Est de 47°47’ à 47°25’ (Goodman et Razafindratsita 2001). Cette zone fait partie de la forêt de l’Est de Madagascar qui subit une forte pression humaine la menaçant de disparition. Elle englobe le PN de Ranomafana, celui de l’Andringitra et une zone forestière continue non protégée reliant ces deux parcs. Ce complexe se prolonge encore vers le sud jusqu’à la réserve spéciale du Pic d’Ivoihibe. La zone forestière attenante à ces deux parcs est assez mal connue (Goodman et Razolonandrasana 1999). Trois sites ont été choisis pour la réalisation de ce travail du 12 avril au 12 mai 2003 à savoir Manambolo, Vinanitelo et Andrambovato. Ils sont bien répartis dans ce corridor forestier (Fig. 1, Tableau 1). La présence des bambous est remarquable dans toutes les trois forêts.

Tableau 1: Coordonnées géographiques des sites d’étude.

<table>
<thead>
<tr>
<th>Site</th>
<th>Altitude</th>
<th>Coordonnées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manambolo I</td>
<td>1300 m</td>
<td>22°08’47”S 47°01’17”E</td>
</tr>
<tr>
<td>Manambolo II</td>
<td>1600 m</td>
<td>22°09’50”S 47°02’25”E</td>
</tr>
<tr>
<td>Vinanitelo</td>
<td>1150 m</td>
<td>21°46’36”S 47°20’00”E</td>
</tr>
<tr>
<td>Andrambovato</td>
<td>1076 m</td>
<td>21°30’38”S 47°24’34”E</td>
</tr>
</tbody>
</table>

La forêt de Manambolo se trouve dans le Fokontany d’Ambalamanenjana, commune rurale de Mia-rinarivo, sous préfecture d’Ambalavao, Province de Fianaratsa. Ce site se situe à 62 km au Sud-Est d’Ambalavao et 12 km au Sud-Est d’Ambalamanenjana. Manambolo se trouve dans la partie Sud du couloir forestier Ranomafana-Andringitra. Ce site de Manambolo se divise en deux parties, notées Manambolo I et Manambolo II. Manambolo I: La forêt est dense et humide, faiblement perturbée par la présence de zébus qui mangent les jeunes pousses d’arbre; la canopée est fermée, atteignant 20 m de hauteur. Manambolo II est une forêt dense humide, intacte pour le versant est (Goodman et Razafindratsita 2001); la partie ouest est faiblement perturbée par la piste utilisée par les Bara qui habitent à Ambatomboay qui viennent au marché de Sendrisoa pour vendre leurs produits et s’approvisionner en vivres; la canopée est fermée, atteignant 10 à 20 m de hauteur. La forêt de Vinanitelo s’appelle Ambodivohatra et appartient au Fokontany de Vinanitelo, commune rurale de Vinanitelo, sous préfecture d’Ikongo, Province de Fianaratsa. Cette forêt se trouve à 15,5 km au Sud Est de Vohitrafeno. Ambodivohatra se situe au centre du couloir forestier Ranomafana-Andringitra. C’est une forêt de montagne, dense et humide (Goodman et al. 1994).

Fig. 1: Carte avec les sites inventoriées. Les "+" marquent des sites où la présence de Hapalemur aureus était confirmée par Goodman et al. (2001).
et Razafindratsita 2001), perturbée par l’exploitation forestière comme le "tavy" et aussi par l’existence d’une piste très animée reliant Vinanitelo et Ikongo; la canopée est semi-ouverte, atteignant 10 à 20 m de hauteur. Quelques endroits sont intacts.

La forêt d’Andrambovato fait partie du Fokontany d’Andrambovato, commune rurale de Tolongoina, sous-Préfecture d’Ikongo, Province de Fianarantsoa. Elle se trouve à 2 km à l’Ouest d’Andrambovato. Par rapport aux deux précédents sites (Manambolo et Vinanitelo), Andrambovato est localisé dans la partie Nord de ce couloir forestier Rano-mafana-Andringitra. Cette forêt présente un aspect de forêt de montagne, dense humide perturbée par l’installation de "tavy", par la présence d’une grande piste qui relie Andrambovato à Sahambyvavy et aussi par le pâturage des zébus.

Méthodologie

Recensement: Dans chaque site d’étude, nous avons effectué des recherches et des observations de l’espèce aux endroits riches en bambous qui constituent l’habitat naturel de cette espèce. Ces recherches s’effectuent dans la matinée de 6 à 11 h et assez tard dans l’après-midi de 15 h à 17 h 30. Le recensement consiste à circuler dans la forêt de bambous et dénombrer tous les individus de *Hapalemur aureus* rencontrés. Durant le passage à travers la forêt, *Hapalemur aureus* est détecté soit par la vue (observation directe de l’animal), soit de façon indirecte par le mouvement de certaines parties de tiges et feuilles dû à son déplacement ou par l’écoute des cris et bruits émis par l’animal lors de son activité. À chaque fois que nous trouvons le groupe, le données suivantes sont enregistrées: nombre d’individus dans le groupe, différentes classes d’âge, temps et date de rencontre avec le groupe, coordonnées géographiques du lieu où se trouve le groupe.

Méthodes de calcul des tailles des populations: En 1998 et 1999, Mustchler et Randrianarison (1998; Mutschler 1999), définissaient deux paramètres importants pour la caractérisation de la population de *Hapalemur griseus alaotrensis* dans la nature. Il s’agit du taux de rencontre, des densités absolue et relative de la population. Le taux de rencontre (TR) est le nombre ou effectif de *H. aureus* rencontré par heure de recensement. Les différentes valeurs ainsi obtenues seront comparées entre les trois sites.

La densité de la population de *H. aureus* dans les trois sites est donnée par le nombre d’individus observés par surface visitée. La superficie de la surface visitée est calculée en utilisant la méthode de polygone convexe minimum fermé (Stickel 1954, dans Razanantsoa 2000). Les points les plus externes où on a vu des animaux sont reliés pour avoir un polygone convexe fermé. La surface du polygone ainsi obtenue est calculée en utilisant le logiciel Map info.

Des estimations de l’effectif total (Pt) de la population d’*H. aureus* dans l’ensemble de ce couloir forestier étaient obtenues en multipliant les densités par site (individu / ha) fois la surface du couloir forestier. La surface du couloir forestier déterminé par le projet "PAGE 2000" est utilisée.

Enquêtes villageoises: Afin de connaître les différentes menaces qui agissent sur la population de *H. aureus*, nous avons mené des enquêtes villageoises au sein de la communauté riveraine de chaque site, ceci dans le but de collecter puis d’analyser les différentes pressions qui pèsent sur cette espèce. Le principe de cette enquête est de faire une interview plutôt sous forme de discussion que de questionnaire, ceci pour éviter ou minimiser toute sorte de facteur pouvant mener les résultats de l’enquête vers une situation tout à fait contraire à la réalité.

Dans chaque site visité, on essaye d’interviewer les personnes de sexes, de classes d’âge, et d’activités professionnelles différentes. Les questions guides étaient: (1) Pourquoi les gens font-ils la chasse? (2) Quelles sont les catégories de personnes qui font la chasse? (3) Comment font-elles la chasse? (4) Á quelle période de l’année la chasse se produit-elle? (5) Quelle est la fréquence de la chasse?

Identification de zones de conservation: Les données suivantes sont utilisées pour la classification des zones de conservation: nombre des groupes ou indice de présence de *Hapalemur aureus*, menaces qui pèsent sur cette population, et densité de la population humaine. Les zones sont classées comme prioritaires pour la conservation si elles possèdent les critères suivants: (1) présence de *H. aureus* ou d’indice d’existence de l’espèce; (2) présence de menace; densité de population humaine > 29,8 habitants/km²; la densité de population de 29,8 habitants/km² est utilisée comme référence car ce chiffre coïncide avec le taux normal estimé pour Madagascar (Ministère de Population 2003).

Résultats

En total cinq groupes ont été détectés (Tableau 2). Un groupe avec 2 individus était rencontré à Manambolo I. Nous avons mis 49 h pour les chercher. Vinanitelo représente le site où nous avons rencontré le plus grand nombre d’*H. aureus*. Pendant 49 h d’observation, 3 groupes contenant 9 individus ont été recensés dans ce site. Ces trois groupes se composent de 7 adultes et 2 juvéniles. Pour Andrambovato, 28 h d’observation ont permis de détecter un groupe composé de 4 membres dont 3 adultes et 1 juvénile.

Des données concernant l’abondance des individus (taux de rencontre) de *H. aureus* ont été obtenues au niveau de chaque site visité. Nous avons dépensé environ 116 heures pour la recherche (Tableau 2). Le taux de rencontre est très bas pour le site de Manambolo (0,04 ind/h), c’est-à-dire que nous avons dépensé au moins 25 heures d’observation pour trouver un individu de *H. aureus*. Dans les sites de Vinanitelo et d’Andrambovato, nous avons recensé un grand nombre d’individus de *H. aureus*. Pour ce site de Vinanitelo, le taux de rencontre est de 0,18 individu par heure. Afin de rencontrer un individu, il faudrait donc dépenser environ 6 heures. Concernant Andrambovato, 0,14 individu par heure correspondrait à une durée de 7 heures 15 minute pour la recherche d’un individu.

Tableau 2: Rencontres et composition des groupes.

<table>
<thead>
<tr>
<th>Sites</th>
<th>Temps de recherche (h)</th>
<th>Nombre des adultes</th>
<th>Nombre des juvéniles</th>
<th>Taux de rencontre (ind/h)</th>
<th>Heure de rencontre</th>
<th>Topographie</th>
<th>Lat/Long.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manambolo</td>
<td>49</td>
<td>2</td>
<td></td>
<td>0,04</td>
<td>6,52</td>
<td>versant</td>
<td>22°10’02” 47°01’46”</td>
</tr>
<tr>
<td>Vinanitelo</td>
<td>49</td>
<td>2</td>
<td>1</td>
<td>0,18</td>
<td>10:10</td>
<td>crête</td>
<td>21°46’49” 47°20’21”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>10:45</td>
<td></td>
<td>crête</td>
<td>21°46’41” 47°20’39”</td>
</tr>
<tr>
<td>Andrambovato</td>
<td>28</td>
<td>3</td>
<td>1</td>
<td>0,14</td>
<td>15:50</td>
<td>versant</td>
<td>21°30’41” 47°24’09”</td>
</tr>
<tr>
<td>Total</td>
<td>116</td>
<td>12</td>
<td>3</td>
<td>0,36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ind/h = individus/h
La rencontre de l’espèce est plus fréquente le matin que l’après midi. Si le taux de rencontre peut atteindre 80% le matin, il n’est que de 20% pour l’après midi. Ces variations peuvent être dues à la différence d’activité entre le matin et l’après midi.

Valeur estimative de la population totale de Hapalemur aureus:
Après utilisation des valeurs correspondantes de chaque paramètre, nous pouvons estimer la valeur estimative de l’effectif total de la population de *H. aureus* à l’époque de la présente étude. A Manambolo la surface inventoriée était de 340 ha, soit 0,006 individus/ha à Vinanitelo et Andrambovato les surfaces étaient 380 et 100 ha, donnant des densités de 0,03 et 0,04 ind./ha. Pour l’ensemble du corridor, la surface peut atteindre 238 300 ha (Projet PAGE 2000). Si on prend la densité minimale de 0,006 ind./ha le nombre total est estimé comme 238 300 x 0,006 = 1429 individus. Si on prend la densité maximale de 0,04 ind./ha le nombre total est estimé comme 9532 individus.

Après des *Hapalemur aureus* des espèces comme *Hapalemur griseus griseus* (*Eulemur rubriventer*, *Varecia variegata*, *Propithecus diadema* sont rencontrés.

Enquêtes villageoises: Un total de 28 personnes est interviewé dans les trois sites étudiés dont 6 femmes (18 %) et 22 hommes (82 %). Ces personnes sont âgées de 18 à 70 ans. Professionnellement, 25 personnes interviewées sont des cultivateurs, soit 90 % du total (Tableau 3). A Manambolo les proportions respectives des pressions qui pèsent sur cette population sont de 60 % chasse, 40 % pour la destruction des habitats. Durant notre étude sur le terrain, nous n’avons pas repéré de trace de feu de brousse "tavy" dans les régions de Manambolo. A Vinanitelo la fréquence des pressions qui pèsent sur cette population est de 10 % pour la chasse, et 90 % pour la destruction des habitats. A Andrambovato la fréquence relative des pressions qui pèsent sur cette population est de 20 % pour la chasse et 80 % pour la destruction des habitats. Après la réalisation des enquêtes, nous constatons que les deux principaux facteurs qui provoquent des effets néfastes sur la population de l’espèce sont la dégradation de son habitat par le feu, c’est-à-dire l’installation de "tavy", ainsi que la chasse aux individus.

Identification de zone de conservation: La densité de population humaine à Vinanitelo peut atteindre 38,8 habitants/km². Concernant Manambolo et Andrambovato, ils ne possèdent que la moitié de la densité de population humaine à Vinanitelo. Ces valeurs sont respectivement de 16,2 habitants/km² et de 18,7 habitants/km² (Ministère de population 2003). Selon les critères d’identification des sites de conservation que nous avons posés dans la méthodologie, Vinanitelo pourrait être proposé comme zone prioritaire car il abrite de nombreux *H. aureus*; la densité de population humaine y est égale à 38,8 habitants/km², ce qui constitue une importante menace pour une zone à indice de diversité biologique élevé. Les activités proposées sont résumées dans le Tableau 4.

Tableau 3: Résultats des enquêtes villageoises; n = nombre des personnes interviewées.

<table>
<thead>
<tr>
<th>Pression</th>
<th>Questions</th>
<th>Manambolo n = 10</th>
<th>Vinanitelo n = 10</th>
<th>Andrambovato n = 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chasse</td>
<td>Raison</td>
<td>Nourriture</td>
<td>Nourriture</td>
<td>Nourriture</td>
</tr>
<tr>
<td>Chasseur</td>
<td></td>
<td>Tanala</td>
<td>Tanala</td>
<td>Tanala</td>
</tr>
<tr>
<td>Mode de chasse</td>
<td></td>
<td>Piégeage</td>
<td>Piégeage</td>
<td>Piégeage</td>
</tr>
<tr>
<td>Période de chasse</td>
<td></td>
<td>Toute l’année</td>
<td>Toute l’année</td>
<td>Toute l’année</td>
</tr>
<tr>
<td>Fréquence de chasse</td>
<td></td>
<td>60%</td>
<td>10%</td>
<td>20%</td>
</tr>
<tr>
<td>Feu de brousse</td>
<td>Raison</td>
<td>"tavy"</td>
<td>"tavy"</td>
<td>"tavy"</td>
</tr>
<tr>
<td>Défricheur</td>
<td></td>
<td>Cultivateur</td>
<td>Cultivateur</td>
<td>Cultivateur</td>
</tr>
<tr>
<td>Période de feu</td>
<td></td>
<td>Période sèche</td>
<td>Période sèche</td>
<td>Période sèche</td>
</tr>
<tr>
<td>Fréquence de feu</td>
<td></td>
<td>40%</td>
<td>90%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Tableau 4: Activités proposées pour la gestion des sites d’étude.

<table>
<thead>
<tr>
<th>Site</th>
<th>Identification</th>
<th>Menaces</th>
<th>Objectifs</th>
<th>Activités</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinanitelo</td>
<td>Zone de conservation prioritaire</td>
<td>Perte d'habitat</td>
<td>Arrêter le défrichement</td>
<td>Mise en place du pare feu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Augmentation de la surface habitable</td>
<td>Restauration de la forêt de bambous</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gestion de l’habitat</td>
<td>Education du publique</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Création des associations villageoises</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transfert de gestion de la forêt à l’association villageoise</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chasse</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gestion de population sauvage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inventaire</td>
</tr>
<tr>
<td>Manambolo</td>
<td>Perte d’habitat</td>
<td></td>
<td>Arrêter le défrichement</td>
<td>Mise en place du pare feu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chasse</td>
<td>Arrêter la chasse</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gestion de population sauvage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inventaire</td>
</tr>
<tr>
<td>Andrambovato</td>
<td>Perte d’habitat</td>
<td></td>
<td>Arrêter le défrichement</td>
<td>Mise en place du pare feu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chasse</td>
<td>Arrêter la chasse</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gestion de population sauvage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inventaire</td>
</tr>
</tbody>
</table>

Discussion
Parmi les trois sites visités, celui de Vinanitelo représente l’endroit où nous avons rencontré le maximum d’effectif ou de groupe d’individus de *Hapalemur aureus*. Ces taux peuvent atteindre 50 % de ces taux de rencontre total soit 0,18 individu/h. Plusieurs facteurs sont connus comme responsables de ces inégalités: (1) Notre campement est bien installé dans la forêt (au milieu de la forêt de bambous) ; ce qui nous facilite d’attendre les vocalisations de cette espèce depuis très tôt le matin. (2) Le site de Vinanitelo est traversé par de nombreuses pistes de circulation humaine. De plus, il est facile de rejoindre les endroits où il y a des bambous. (3) Enfin, il faisait beau (pas de pluie) durant notre séjour et...
nous pensons que *H. aureus* était probablement plus actif. On peut donc circuler facilement dans la forêt et rencontrer aisément les animaux.

Le taux de rencontre à Manambo est de 11 % durant la présente étude soit 0,04 individu/h. La difficulté de trouver l'endroit où se trouve les bambous est l'un des facteurs qui provoquent ce faible taux de rencontre. L'insuffisance du système de piste dans la forêt provoque aussi des impacts sur l'efficacité du recensement.

Compte tenu des difficultés de déplacements et des conditions climatiques (cyclone "Manou"), le temps qui nous reste pour la recherche devient insuffisant (28 h d'observation) à Andrambovato.

Enquêtes villageaises: Les enquêtes menées auprès de la population locale de chaque site visité nous permettent de mieux connaître les grands facteurs de menaces qui pèsent sur la population de l'animal en question. A l’issue de cette interview, nous concluons que le feu de brousse constitue la principale menace conduisant à la diminution progressive de la population de *H. aureus*. Toutefois, nous nous rendons compte que l'effet de chasse constitue aussi un facteur important. Les informations recueillies au niveau de la population riveraine permettent de justifier que la chasse existe presque partout dans ce couloir forestier. Le mode de chasse est le même dans l'ensemble de la région: utilisation de piège. L'objectif est le même et presque identique dans l'ensemble de la région (nourriture, domestication). La destruction des habitats par la culture itinérante (tavy) et le mode de forêt pour le renouvellement du pâturage constitué aussi des menaces majeures pour la population de *H. aureus*.

Conclusion

La présente étude nous a permis de dire que la distribution de *Hapalemur aureus* s'étale jusqu'à Andrambovato. Les inventaires biologiques effectués par l'équipe de Goodman et al. (2001) mentionnent l'absence de *H. aureus* dans cette région. Mais cette forêt constitue une importante zone pour sa survie à condition que la forêt y soit conservée. Notre étude nous a permis de dire que le corridor forestier entre le Parc National de Ranomafana et le Parc National d'Andringitra abrite encore *H. aureus*. Trois groupes qui contiennent respectivement 9 individus à Vontimbelo, un groupe composé de 4 individus à Andrambovato, un groupe avec 2 individus à Manambo, soit un total de 5 groupes avec 15 individus est trouvé pendant notre étude sur terrain.

D'après cette recherche, si la densité minimale de *H. aureus* est utilisée, (0,006 ind./ha) le couloir forestier Ranomana-Andringitra abrite environ 1429 individus. Si on prend la densité maximale (0,04 ind./ha), ce couloir forestier héberge 9532 individus. Le nombre d'individus de *H. aureus* dans le couloir forestier varierait entre 1429 et 9532 individus. Les différentes sortes de pressions d'origine anthropique telles que les défrichements, la chasse aux lémuriens, la collecte de produits secondaires (miel, exploitation de tige de bambous) et le feu de brousse pour la culture sur brûlis sont constatées.

Bibliographie

CAMP 2001. Evaluation et Plans de gestion pour la conservation de la faune de Madagascar: Lémuriens, autres Mammifères, Poissons d'eau douce et Évaluation de la viabilité des populations et habitats de *Hypogeomis anti-

Razanantssoa, Z.U.A. 2000 Contribution à l'étude de la population de *Propithecus verreauxi deckeni* (Peters, 1870) dans la forêt de Tsimonbo aux alentours du complexe des trois lacs et impacts des activités humaines sur cette population. DEA, Biologie animale, Université d'Antananarivo.

Influence des effets anthropiques sur la dynamique de population de *Hapale-mur griseus alaotrensis* ou "Bandro" dans son habitat naturel

Ralahinoso Fidimalalao Bruno
Durrell Wildlife Conservation Trust, Lot II Y 49 J, Ampasina- nalo, Antananarivo (101), Madagascar, fidy03@hotmail.com

Mots clés: Recensement, Conservation, Menace, Primates, Lémuriens, *Hapalemur griseus alaotrensis*, Madagascar

Résumé

Hapalemur griseus alaotrensis ou Bandro est une sous-espèce de lémurien endémique de la région du Lac Alaotra ; elle vit dans un écosystème marécageux entourant ce Lac. Outre sa distribution restreinte, *H. alaotrensis* a une alimentation spécialisée composée de papyrus et de roseaux alors que chez ses congénères elle est constituée de bambous. Concernant son statut de conservation, cette sous-
espèce se trouve dans des conditions très précaires; d’après UICN 2001, H. g. alaotrensis est classée dans la catégorie des espèces "gravement menacées". Face à cette situation, Durrell Wildlife Conservation Trust (DW) a mené des actions de conservation dans la région à partir de 1990 mais le problème d’extermination continue à menacer H. g. alaotrensis. La présente recherche veut suivre de près l’évolution de la population de cette sous-espèce et les différentes raisons de cette évolution dans l’espoir d’en trouver les causes profondes. Sept mois de recherches sur terrain divisés en deux périodes ont été menés sur place. La première descente s’est déroulée du mois de décembre 2000 au mois de mai 2001 et la deuxième du mois de mars au mois d’avril 2002. Quatre sites ont été choisis pour la réalisation de ce travail: Andreba et Ambodivoara sur la rive Est, Andilana et Anororo sur la rive Ouest du pourtour du grand lac Alaotra. La présente étude a comme objectif d’étudier l’évolution de l’effectif total de la population de H. g. alaotrensis face aux actions d’origine anthropique. La population de H. g. alaotrensis en 2002 est estimée à 2480 individus contre 10710 en 1994. La chasse et la destruction de l’habitat effectués par les autochtones constituent les principaux facteurs de déclin. La domestication et le commerce de cette sous-espèce présentent également des effets catastrophiques. Le grand changement climatique des dix dernières années n’est pas non plus étranger à ce déclin. En effet, si aucune mesure efficace n’est pas prise dans l’immédiat, cette sous-espèce disparaîtra dans la prochaine décennie et petit à petit d’autres espèces suivront la même voie.

Introduction

La zone humide d’Alaotra est le troisième site RAMSAR à Madagascar. La présence d’un grand nombre d’espèces endémiques tant animales que végétales permet de classer cette région comme site d’intérêt biologique. Le marais d’Alaotra joue un rôle de filtre naturel qui empêche l’entrée des débris transportés par les rivières vers le lac. Ce marais constitue également un lieu de reproduction d’un grand nombre d’oiseaux d’eau et de poissons endémiques, c’est aussi l’abri permanent d’une sous-espèce de Lémurien endémique de la région, *Hapalemur griseus alaotrensis*. Malgré ces grandes merveilles, permettant de classer la zone humide d’Alaotra comme site d’importance biologique, la population d’*H. g. alaotrensis* a diminué de moitié entre 1980 et 2002. Une action de sensibilisation et de conscientisation a été mise en place par les pêcheurs de la région,*Onjy* et*Vivin’Alaotra*. Au total, nous avons dépensé cinq jours sur place, soit de 10h30 le matin et de 18h30 le soir. L’animal est détecté par la vue à distance. Ce travail a récemment été publié dans le journal *Lemur News* (Vol. 9, 2004, p. 33). La population de *H. g. alaotrensis* a diminué de moitié entre 1980 et 2002. Une action de sensibilisation et de conscientisation a été mise en place par les pêcheurs de la région, *Onjy* et *Vivin’Alaotra*. Au total, nous avons dépensé cinq jours sur place, soit de 10h30 le matin et de 18h30 le soir. L’animal est détecté par la vue à distance. Ce travail a récemment été publié dans le journal *Lemur News* (Vol. 9, 2004, p. 33).
(observation directe) ou par écoute (détectio à partir des vocations ou par les craquements des branches lorsque l'animal est en pleine activité) ou bien par repérage des mouvements de végétation lorsque l’animal se déplace.

L’animal une fois repéré, nous avons collecté les données sur

la composition du groupe, si possible la classe d’âge et le sexe

de chaque membre, la distance entre le groupe est l’observateur et enfin le temps d’observation. Un groupe ne doit pas observé plus de 10 minutes (temps suffisamment large pour faire l’observation sur un groupe rencontré).

Le rapport entre la somme totale des groupes rencontrés et la somme totale des temps d’observation permet d’estimer la valeur d’un paramètre appelé Taux de rencontre (TR) ou densité relative qui a comme unité le nombre d’individus rencontré par heure. Ce paramètre est valable pour les quatre sites visités.

Outre la recherche de l’animal effectué au niveau des quatre sites, nous avons procédé à la capture des groupes ou des individus de *H. g. alaotrensis* dans une portion de marais localisé dans le site Andreba. Cette partie de marais est nommée "Parc villageois d’Andreba". Grâce à la petite superficie du marais ainsi qu’à l’abondance des circuits disponibles dans ce parc, nous avons eu la grande opportunité de capturer et de repérer tous les groupes présents dans ce périmètre. L’objectif de la capture est d’avoir au moins un individu par groupe et nous avons mis un collier en plastique sur le cou de l’individu capturé avant son relâche. L’utilisation des différents colliers de couleur garantit la distinction des groupes présents, en plus la composition du groupe après la capture est vérifiée au moins trois fois.

Le rapport entre le nombre total des groupes capturés et la superficie totale du marais du parc permet d’estimer la valeur de la densité approximative (DA). Ainsi la population totale de *H. g. alaotrensis* dans l’ensemble du marais d’Alaotra est estimé en utilisant la relation suivante:

\[
PT = c \sum \left(\frac{DA \times TRi}{TRa} \right) Si
\]

PT: Population Totale

DA: Densité approximative

TRi: Taux de Rencontre du site "i"

TRa: Taux de Rencontre du site Andreba

Si: Superficie du site "i"

C: Coefficient d’ajustement

Pour que les résultats obtenus soient comparables entre eux et avec les travaux antérieurs, nous avons fait exprès de suivre la méthode de calcul utilisée par Mutschler et al. depuis la première période de recensement en 1994.

Résultats

Après les cinq jours de recensement, des données sur l’abondance relative (Taux de Rencontre) ont été collectées au niveau de chaque site visité. Le tableau suivant montre en partie le détail des informations obtenues:

Tableau 1: Calcul du taux de rencontre (TR) au niveau de chaque site.

<table>
<thead>
<tr>
<th>Sites</th>
<th>Superficies (ha)</th>
<th>Années</th>
<th>Temps d'observation (min)</th>
<th>Nombre total de d'individus (groupes rencontrés)</th>
<th>Taux de rencontre (ind/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andreba</td>
<td>235</td>
<td>2001</td>
<td>2035</td>
<td>80 (19)</td>
<td>2.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2002</td>
<td>1963</td>
<td>79 (22)</td>
<td>2.41</td>
</tr>
<tr>
<td>Ambodivoara</td>
<td>2.437</td>
<td>2001</td>
<td>2445</td>
<td>8 (3)</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2002</td>
<td>2256</td>
<td>25 (10)</td>
<td>0.66</td>
</tr>
<tr>
<td>Andilana</td>
<td>5.700</td>
<td>2001</td>
<td>2460</td>
<td>7 (1)</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2002</td>
<td>2054</td>
<td>8 (5)</td>
<td>0.23</td>
</tr>
<tr>
<td>Anororo</td>
<td>9.850</td>
<td>2001</td>
<td>2365</td>
<td>17 (3)</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2002</td>
<td>1694</td>
<td>6 (2)</td>
<td>0.21</td>
</tr>
</tbody>
</table>

En ce qui concerne la capture, 16 groupes sur les 19 présents dans le parc ont des représentants capturés, ce qui donne un taux de réussite estimé à 84%. Ces 19 groupes renferment au total 76 individus. Connaissant le nombre total d’individus présents dans le parc ainsi que sa superficie respective, nous avons pu calculé la valeur de la densité approximative (DA) de *H. g. alaotrensis* selon la relation suivante:

\[
DA = \frac{76 \text{ individus}}{83 \text{ hectares}} = 0,915 \text{ ind/ha}
\]

A partir de ces deux paramètres c’est-à-dire Taux de rencontre (TR) et Densité Approximative (DA) il est possible d’estimer la population locale (Pi) au niveau des quatre site et également la Population Totale (PT) de *H. g. alaotrensis* dans l’ensemble du marais d’Alaotra. Le détail de calcul sera présenté dans les Tableaux 2 et 3.

Tableau 2: Valeurs de Pi de la population de *H. g. alaotrensis* dans les quatre sites en 2001.

<table>
<thead>
<tr>
<th>Sites</th>
<th>Si (ha)</th>
<th>TRi (ind/h)</th>
<th>DA x TRi</th>
<th>Pi=Si x DA x TRi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andreba</td>
<td>235</td>
<td>23.6</td>
<td>0.915</td>
<td>215</td>
</tr>
<tr>
<td>Ambodivoara</td>
<td>2.437</td>
<td>0.20</td>
<td>0.077</td>
<td>189</td>
</tr>
<tr>
<td>Andilana</td>
<td>5.700</td>
<td>0.17</td>
<td>0.066</td>
<td>376</td>
</tr>
<tr>
<td>Anororo</td>
<td>9.850</td>
<td>0.43</td>
<td>0.167</td>
<td>1642</td>
</tr>
<tr>
<td>Total</td>
<td>18.812</td>
<td></td>
<td></td>
<td>2422</td>
</tr>
</tbody>
</table>

Avec DA = 0.915; TRa = 2.36; Si: Superficie en hectare du marais du site i; Pi: Population locale; i: Andreba, Ambodivoara, Andilana, Anororo; ind/h: individus par heure.

Dans ce cas, la population totale (PT) de *H. g. alaotrensis* est estimée à:

\[
PT = c \times Pi = 1,176 \times 2.422 = 2.848 \text{ individus}
\]

Tableau 3: Valeurs de Pi de la population de *H. g. alaotrensis* dans les quatre sites en 2002.

<table>
<thead>
<tr>
<th>Sites</th>
<th>Si (ha)</th>
<th>TRi (ind/h)</th>
<th>DA x TRi</th>
<th>Pi=Si x DA x TRi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andreba</td>
<td>235</td>
<td>2.41</td>
<td>0.915</td>
<td>215</td>
</tr>
<tr>
<td>Ambodivoara</td>
<td>2.437</td>
<td>0.66</td>
<td>0.250</td>
<td>611</td>
</tr>
<tr>
<td>Andilana</td>
<td>5.700</td>
<td>0.23</td>
<td>0.087</td>
<td>498</td>
</tr>
<tr>
<td>Anororo</td>
<td>9.850</td>
<td>0.21</td>
<td>0.0797</td>
<td>785</td>
</tr>
<tr>
<td>Total</td>
<td>18.812</td>
<td></td>
<td></td>
<td>2109</td>
</tr>
</tbody>
</table>

Avec DA = 0.915; TRa = 2.36; Si: Superficie en hectare du marais du site i; Pi: Population locale; i: Andreba, Ambodivoara, Andilana, Anororo; ind/h: individus par heure.

Cette fois ci la population de *H. g. alaotrensis* est estimé à:

\[
PT = c \times Pi = 1,176 \times 2.109 = 2.848 \text{ individus}
\]

La comparaison des résultats obtenus à partir de la première année de recensement (1994) nous permet d’étudier l’évolution de la population de *H. g. alaotrensis*. Cette étude comparative est faisable en prenant toutes les différences que représentent les valeurs du taux de rencontre au niveau de chaque site au cours des quatre années de recensement. Ces différents valeurs sont représentés dans le Tableau 4. Seul le site Andreba représente une augmentation de la valeur du taux de rencontre à partir de la troisième année de recensement. Malgré cette petite augmentation de la valeur du taux de rencontre dans ce site Andreba nous avons constaté que la Population Totale (PT) de *H. g. alaotrensis* dans l’ensemble du marais d’Alaotra diminue après chaque année de recensement.
Tableau 4: Comparaison entre les différentes valeurs de taux de rencontre dans les quatre sites.

<table>
<thead>
<tr>
<th>Sites</th>
<th>Taux de rencontre (individus/heure)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1994*</td>
</tr>
<tr>
<td>Andreba</td>
<td>1,76</td>
</tr>
<tr>
<td>Ambodivoara</td>
<td>-</td>
</tr>
<tr>
<td>Andilana</td>
<td>1,29</td>
</tr>
<tr>
<td>Azororo</td>
<td>1,53</td>
</tr>
<tr>
<td>Population Totale (PT)</td>
<td>10710</td>
</tr>
</tbody>
</table>

Discussions

Plusieurs méthodes ont été utilisées pour le comptage des individus occupant un territoire donné. La méthode type "Distance Sampling" semble être la plus utilisée par les chercheurs mais nous personnellement nous n’avons pas pu utiliser cette méthode vu la difficulté de prendre une mesure sur la longueur du piste ou transect utilisé. Selon les renseignements obtenus au sein de la population locale, il est certain que la chasse extensive des individus de H. g. aaloatrensis est très fréquente surtout dans les années 80. Actuellement la chasse existe encore mais la fréquence commence à diminuer, ceci grâce aux actions de conservation appliquées presque dans la totalité de la région.

Outre l’effet néaste de la chasse, la destruction de l’habitat par la pratique de la culture sur brûlis a des conséquences graves sur la distribution de la population du Bandro. Certe, la portion de marais brûlé ne pourrait plus être considéré comme habitat type de H. g. aaloatrensis qu’après plusieurs années de régénération. Plus la superficie brûlée augmente chaque année plus la menace sur la population reste augmentée.

Le changement climatique des dix dernières années aggrave également la situation parce que le marais asséché est très combustible c’est-à-dire le passage du feu à travers le marais s’effectue plus rapidement. D’autre part lorsque la pluie est insuffisante les produits de récolte n’arrivent plus à subvenir aux besoins quotidiens de la population. Dans ce cas les populations locales sont obligées de trouver d’autres moyens pour compenser cette lacune, parmi ces moyens la chasse aux animaux sauvages se classe au premier lieu.

Remerciements

Référence bibliographiques

Meetings

Feeding Ecology in Apes and Other Primates: Ecological, Physiological and Behavioral Aspects

17-20 August, 2004, Leipzig, Germany. This meeting addresses issues of feeding ecology and related questions from different perspectives, bringing together both field and lab scientists from different disciplines including anthropology, evolutionary biology, primatology, physiology, and biochemistry. The goal is to synthesize the latest research on the feeding ecology of apes, and to identify avenues of future research to best understand the evolution of the diversity of feeding ecology strategies observed in the apes. The conference will be held at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, and will host about twenty-five invited speakers for oral presentations. In addition, the conference invites poster presentations on related topics. For more information, please contact Claudia Nebel, nebel@eva.mpg.de or Silke Streiber streiber@eva.mpg.de, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany. Phone: +49-341-3550-200, fax: +49-341-3550-299, or see the conference website: http://www.eva.mpg.de/primat/FEC2004/index.htm.

XXth Congress of the International Primatological Society

23-28 August, 2004, Torino, Italy. All major topics of primatology will be discussed, with an emphasis on their interactions with other specialized branches of modern biology. Special attention will be paid also to the implementation of recent discoveries on primate welfare and conservation. For comprehensive information on abstracts, schedules, registration and pre-congress workshops, see the website at http://www.ips2004.unito.it.
3rd IUCN World Conservation Congress

17 - 25 November 2004, Bangkok, Thailand. Theme: "People and Nature – Only One World". IUCN members will gather to set the work priorities of the Union and elect its Council for the interse ssional period. The IUCN World Conservation Forum takes places 18-20 November, and the Members' Business Assembly 21-25 November. The Species Survival Commission (SSC) meeting will be held in Bangkok over two days prior to the Congress from 16 to 17 November 2004. Dr David Brackett, who has served two terms as Chair of the SSC, will be standing down, and elections will be held for the new Chair during the Business Assembly. See: http://www.iucn.org/themes/sec.

Association of Tropical Biology and Conservation – 2005 Annual Meeting

23 - 29 July 2005, Uberlândia, Brazil. The venue will be the Uberlândia Convention Center. For more information write to the Chair of the Organizing Committee, Kleber del-Claro, Laboratório de Ecologia Comportamental e Interações, Universidade Federal de Uberlândia, Caixa Postal 593, Uberlândia, 38400-902 Minas Gerais, Brazil; delclaro@ufu.br or atbc2005@inbio.ufu.br.

IX International Mammalogical Congress

1st Congress of the European Federation for Primatology (EFP)

9 - 12 August, 2005, the 1. Congress of the European Federation for Primatology (EFP) will take place in Göttingen (Germany). European students and researchers working on all aspects of primatology are invited to attend. Registration (01 Nov 2004 30 March 2005) and further information at http://www.gf-primatologie.de/EFP2005/index.htm.

29th International Ethological Conference

20 - 27 August, 2005, Budapest, Hungary. The aim for this conference is to encourage interdisciplinary discussion among representatives of all areas of behavioral biology. The conference will be hosted at the Eötvös University Convention Center on the banks of the Danube. Deadline for early registration and abstract acceptance: 1 March 2005. Final deadline for abstract acceptance: 1 May, 2005. Late registration until 1 June 2005. For more information, write to: IEC2005, Department of Ethology, Eötvös University, 1117 Budapest, Hungary, or subscribe to the e-mail newsletter at IEC2005 subscribe@yahoogroups.com.

Recent Publications

The Natural History of Madagascar, edited by Steven M. Goodman and Jonathan P. Benstead, 1709 pp., 2003. University of Chicago Press, Chicago and London. ISBN 0-226-30306-3. The vast island of Madagascar has been renowned as a "naturalist’s paradise" ever since Joseph-Philibert Commerson described it thus in 1711. Yet, at least until this volume thudded on to my desk, I would have said that in comparison with the breadth and depth of the biological riches it offers, our knowledge of its natural history still remained curiously sketchy. With The Natural History of Madagascar in front of one, however, it is possible to appreciate just how how much we have learned in recent years about the island's unique flora and fauna, due in no small part to the efforts of its first editor, an ornithologist who over the past decade and a half has indefatigably organized faunal inventories throughout the island. This ambitious book brings together, at a fair level of detail, a large part of what is currently known about Madagascar's biota. In assembling contributions from a very high proportion of all the biologists currently conducting active field research in the island, it provides a pretty accurate reflection of the current state of the art. And while scanning through its vast table of contents hence quickly reveals as much about what is not known as about what is, it is difficult not to be impressed by what has lately been achieved by a growing band of dedicated researchers from all over the world, not least from Madagascar itself. The scope of this volume is enormous. It starts out with a sadly rather perfunctory overview of scientific exploration in Madagascar, then continues to a chapter on "Geology and Soils" that brings together a series of contributions on the island's geological origins, vertebrate palaeontology, edaphics and prehistoric environments, all providing essential background for what is to follow. There is consensus here over the long isolation of Madagascar from Africa, but the possibility is acknowledged of sporadic connection to the other areas of Gondwana via India at a more recent date, though disagreements persist over the details. Next among the "background" entries are chapters on Madagascar's climate and forest ecology, prefacing a chapter on various aspects of human ecology in which a score of authors introduces the island's human inhabitants as well as Madagascar's current ecological plight and the human factors that contribute to it.

The bulk of the book consists of a series of large multi-authored chapters devoted successively to Madagascar's plants, invertebrates, fishes, amphibians, reptiles, birds and mammals. Each chapter starts with an overview of the group in question, sometimes followed by a few topical entries that are followed in turn by several dozen short sections (none more than about ten pages in length) that review what is known of individual taxa (of variable rank, ranging all the way from species to families to orders). The editors have had, of course, to go where the information is, so that the scope of the coverage varies rather widely among the various major taxa discussed. But while the level of detail fluctuates according to taxon and topic, all of the contributions bear the stamp of authority to be expected from active researchers who are writing on the immediate subjects of their expertise. Most readers of Lemur News will be particularly interested in the two concluding chapters of the book, "Mammals" and "Conservation", which at a combined length of some 450 pages make up the final one-third of this huge volume. The "Mammals" chapter begins with a particularly elaborate and useful overview, followed by topi-
cal sections reviewing introduced mammals and their ectoparasites, endoparasites, physiological adaptations, the dietary habits of tenrecs, bats and primates, predation on lemurs and population effects of forest fragmentation. The phylogenetic relationships of the tenrecs, lemurs, carnivores and endemic rodents are reviewed in separate chapters, all of which emphasize molecular approaches (and if there is one perhaps avoidable weakness in this volume it is surely the general neglect of morphology, which many might feel deserves a more significant place in a compilation that strives for comprehensiveness). Yoder and Flynn strongly support the notion that all endemic Malagasy carnivores are descended from a single herbivorous ancestor that arrived from Africa between about 30 and 20 million years ago. Yoder is equally insistent that all lemurs are descended from a single ancestral immigrant that arrived in Madagascar around 50 million years ago, and that the aye-aye is the sister of all other members of the resulting clade, among which Lepilemur is the outlier and other family-level relationships remain unresolved. Olson and Goodman more hesitantly plump for tenrec monophyly, while Jansa and Carleton hedge their bets on the nesomyine rodents. Still, there is general consensus that Madagascar’s non-flying primate lineage has some 19-20 genera, with species lists. Each chapter is accompanied by a comprehensive bibliography, and is complemented by a scattering of excellent photographs by Harald Schütz and others. All of this adds up to a resource of unparalleled usefulness for anyone interested in Madagascar and its biota, and – perhaps apart from the lack of an entry addressing the larger biogeographical picture of the origin(s) of Madagascar’s flora and fauna as a whole – it is hard to think of much to reproach this volume with. Apart, that is, from its sheer size. This book is so huge that it is physically difficult to read, and it is at risk of literally falling apart under the sort of heavy use that it might experience in a library. One thus has to ask whether it might not have been wiser to break it up into a series of more compact volumes; but since under current publishing conditions the mammoth volume alone might well have been priced as high as the whole, most of us will be grateful that we can have the entire biota of Madagascar authoritatively on our bookshelves for an eminently reasonable eighty-five dollars.

IAN TATTERSALL, Division of Anthropology, American Museum of Natural History, New York, NY 10024.
Note: This brief notice is adapted from a review originally prepared for the Journal of Mammalogy.

Monogamy: Mating Strategies and Partnerships in Birds, Humans, and Other Mammals,

Lemur News Vol. 9, 2004 Page 38

The 2nd revised edition 2003 is an update on the previous 1972 and 1978 1st Editions. It covers over 250 species of primates. Chapter 1 is new and discusses foraging in the wild, gastrointestinal morphology and physiology of prosimians, marmosets, cebids, colobines, non-colobine cercopithecines, and the apes. Chapter 2 covers energy requirements of adults, growth of young, pregnancy and lactation. Chapter 3 discusses carbohydrates including classification and digestion, incorporating examples of wild sources of fiber and what fiber levels are found in captive primate diets. Chapter 4 covers protein sources and requirements, Chapter 5 fats and fatty acids, Chapter 6 minerals, Chapter 7 vitamins, and Chapter 8 water requirements. Chapter 9 discusses pathophysiologic and life-stage considerations, and Chapter 10 diet formulation and dietary husbandry. Chapter 11 covers nutrient requirements and purified and semipurified diets. Chapter 12 is comprised largely of tables – including, for example, the composition of important feeds, mineral concentrations in macro- and micromineral sources, and the characteristics of various sources of fats and oils. Chapter 13 examines food as a component of environmental enrichment. This book is available from the National Academies Press at http://www.nap.edu/catalog/9826.html, where it can be ordered in hardcopy or browsed online.

Field and Laboratory Methods in Primatology: A Practical Guide, edited by J.M. Setchell and D.J. Curtis, 2003. Cambridge University Press, Cambridge, UK. 343 pp. $100.00 (USD). A Must-Have Book for Primate-Watchers. If this book had been available when I began conducting field studies in 1973, I would have learned fewer lessons by trial and error. Setchell and Curtis, researchers in the early years of their careers, have produced a comprehensive and knowledgeable volume summarizing many of the most important aspects of primate research. In their words, "If this book proves useful to fieldworkers, acts to stimulate research and understanding of primates in their natural state, and through that increased knowledge can make some small contribution to primate conservation, then we will have achieved our aim" (Curtis and Setchell 2003: 12). Field and Laboratory Methods in Primatology (hereafter, FLMP) is likely to accomplish the authors' objectives. Since their Introduction includes a detailed overview of the volume, here I will highlight what seem to me its primary strengths and weaknesses. It is necessary to reveal a bias borne of age and, perhaps, fading memory. Like elders recalled from my own youth, I note a growing tendency to romanticize my early years in the field and, armed with anecdote, to exaggerate my past experiences studying monkeys. But I do think it may be accurate to say that when I began as a fieldworker, research was conducted with fewer ethical constraints – or, rather, with less self-consciousness about these issues. One rarely hesitated to collect animals, to conduct field manipulations, to mark individuals, to place weighty transmitter collars around their necks, and otherwise intervene in the natural course of events, as long as this was considered to serve the ends of Science (with a capital "S"). I fear that, perhaps due to the critical losses of biodiversity, purely scientific ends have been compromised. Surely the issue of primate conservation is a compelling one for all of the contributors to FLMP, and it is unlikely that any primatologist today can separate his or her science from a concurrent concern for the fate of prosimians, monkeys, and apes. Among the numerous strengths of this book are its balanced emphasis upon Neotropical and Paleotropical species, recommendations of websites and products, well-documented reviews, chapters covering poorly known topics not emphasized in most graduate programs (e.g., chronobiology, field endocrinology), and a humorous but practical concluding chapter of "tips" from Adaptors to Zip-lock Bags. There are, however, some disappointments. Certain "litanies" of field work common when I was trained are not included (e.g., safe procedures for tasting fruit, the danger of many extravagant species [e.g., orchids, frogs], and the importance of wearing dull-colored clothing [a lesson learned from Louis Leakey who, to my delight, was a Visiting Scientist at Cornell during my graduate training]). Another significant omission is the failure to provide instruction for the use of rappelling
equipment to climb trees or descend rock faces, and I think that a chapter on procedures for studying "recognition mechanisms" (e.g., individual, kin) should have been included in the book. Perhaps most seriously for myself, however, was to see Jeanne Altmann’s classic paper on observational study attributed to Stuart Altmann on page xxiii. In the early 1970s, a professor gave me a copy of this paper when it was circulating for commentary in preprint form, creating one of my most pleasurable memories from graduate school. Throughout my reading of FLMP, I was aware in almost every chapter of the distance still remaining between biologists and many social scientists. The contributors, most of whom are anthropologists, appear to be interested in primates primarily in their own right, and especially in relation to humans, rather than as components of communities and ecosystems governed by "first principles". Approaches to the study of animals found in mainstream ecology and natural history journals (e.g., Ecology, Oikos, Conservation Biology, The American Naturalist) are, on the whole, not reflected in this volume. If primatologists are to become integrated with the wider community of natural scientists, it will be necessary for us to adopt standard approaches and procedures of population, community and ecosystem ecology, not only the science of the individual and his or her group or population. Primates are evolved taxa positioned in the dynamic context of abiotic and biotic forces, subject to the same constraints governing other taxa, and the present volume neither provides such a holistic (ecological) perspective nor the insights or procedures required to study the Order with the tools of population, community and ecosystem ecology. The website of the American Society of Mammalogists: http://www.mammalsociety.org/pubsociety/index.html.

and those of other professional societies relevant to mammalogists include publications that would be helpful to primatologists, based upon the perspectives and procedures taught in tropical biology field courses (e.g., courses sponsored by the Organization for Tropical Studies) rarely attended by students of primates. My own personal bias is that primatology should be absorbed into mammalogy and ecology; but my quibbles are not intended to detract from a solid text reflecting the current state of methods and procedures in field and laboratory research on primates. Setchell and Curtis are to be congratulated for editing a volume that every aspiring fieldworker should read before committing to a career in primatology and that primate researchers are advised to carry with them at all times in the field. Reviewed by Clara B. Jones.

As our closest evolutionary relatives, nonhuman primates are integral elements in our mythologies, diets and scientific paradigms, yet most species now face an uncertain future through exploitation for the pet and bushmeat trades, as well as progressive habitat loss. New information about disease transmission, dietary and economic linkage, and the continuing international focus on conservation and primate research have created a surge of interest in primates, and focus on diverse interaction of human and nonhuman primates has become an important component in primatological and ethnographic studies. By examining the diverse and fascinating range of relationships between humans and other primates, and how this plays a critical role in conservation practice and programs, Primates Face to Face disseminates the information gained from the anthropological study of nonhuman primates to the wider academic and nonacademic world. Available from: Cambridge University Press, 40 West 20th Street, New York, NY 10011-4211, USA, Tel: (800) 872-7423, Fax: (914) 937-4712, directcustserve@cambridge.org, http://www.cambridge.org.

Journals and Book chapters (without abstracts)

Primate Conservation – Number 19

Issue number of 19 (2003) of the IUCN/SSC Primate Specialist Group journal Primate Conservation has at last been published after a gap of some years. Its publication was supported by the Center for Applied Biodiversity Science at Conservation International, and the costs of printing and distribution through a special grant from the Margot Marsh Biodiversity Foundation. It has 12 excellent articles.

Madagascar Section: A survey of the habitat of *Lemur catta* in...
Theses completed

Résumé: Dans le cadre de la conservation du Propithecus tattersalli et du suivi-écologique de ce lémurien, nous avons effectué un stage de mémoire dans la région de Daraina concernant les menaces anthropiques sur son comportement alimentaire. Ce stage a été effectué au sein du Projet d’Appui B la Gestion de l’Environnement (PAGE) exécuté par International Resources group (IRG). L’étude a été menée en août et septembre 2000. Pour répondre B notre problématique qui a été de savoir si le comportement alimentaire du lémurien est menacé par les activités villageoises, nous avons d’abord fait des observations sur son comportement alimentaire dans son habitat naturel en utilisant la méthode du Focal Animal Sampling (F.A.S.) et celle du Scan Sampling. Ensuite, nous avons mené une enquête auprès des villageois près de la forêt de Bekaraoka et des fragments de forêts. Nous avons trouvé que ce lémurien est folivore pendant une partie de l’année et que son régime alimentaire est constitué de jeunes feuilles (+ 45 %). Ces dernières sont fournies par 4 espèces végétales en général: Physena madagascariensis, Xanthocercis madagascariensis, Cynometra sp. et Majidea zanguebarica qui ont une hauteur de 5 à 15 mètres. La collecte des produits de forêt pour la construction de cases et de clôtures, le combustible et la médecine sont les formes d’utilisation par les villageois de l’habitat du Sifaka en particulier le domaine vital. Ces produits de la forêt constituent 21,71 % des espèces végétales consommées par l’animal pour ses besoins vitaux. Autrement dit, l’utilisation humaine des espèces du domaine vital du Sifaka menace le comportement alimentaire de ce dernier. Des mesures d’atténuation s’avèrent alors nécessaires pour que les impacts de cette utilisation humaine ne s’aggravent pas et les pertes en biodiversité. Cette étude a aussi permis de connaître que les menaces de ce lémurien ne se limitent pas seulement aux activités humaines mais dépendent d’autres facteurs entre autre le facteur climatique.

Résumé: Deux ou plusieurs espèces animales peuvent coexister si, au moins, l’une de leurs niches ne se chevauche pas. Trois genres de lémuriens nocturnes (Microcebus, Cheirogaleus et Avahi) dans la forêt littorale de Mandena (Fort-Dauphin) ont été étudiés depuis novembre 2000 jusqu’en janvier 2001. Ces lémuriens diffèrent au niveau de la densité, de l’effectif d’individus observés par nuit, de leurs rythmes d’activités, du choix dans l’utilisation du support (hauteur, taille et orientation des branches). Par contre, le nombre d’individus surveillés à chaque phase lunaire est identique ainsi que les structures de leurs micro-habitats. Aussi les effets de la dégradation de la forêt sur cette séparation ont-il été étudiés. Ainsi, le partage écologique de quelques dimensions disparaît telles que le rythme d’activité pratiqué par microcèbres et cheirogales, le nombre d’individus observés par nuit pour cheirogales et avahis, la sélection dans l’utilisation du support (taille et orientation des branches). Cependant, une niche non partagée en milieu moins dégradé est utilisée séparément en milieu entièrement endommagé: c’est la densité des grands arbres qui constituent leur micro-habitat.

The main purpose of this study was to gain insight into overall fruit-frugivore interactions in the littoral forest of Sainte Luce and to study primary seed dispersal from the perspective of both the tree and the consumer species (lemurs, birds, flying foxes, rats). This study provided a survey on fruit availability and its fluctuation in the littoral forest as well as an extensive three-dimensional dataset involving numerous plant species with their corresponding phenological, morphological and biochemical traits. Three hypotheses concerning evidence of co-evolution between life history traits of plants, their diaspores and animal consumers were tested by studying the frugivorous vertebrates and the dispersal strategies of 34 tree species (Bollen et al. in press a). No evidence was found for species-specific co-evolution in this study, nor for the low-high investment model, that subdivides tree species into specialists and generalists. The concept of dispersal syndromes was supported most clearly. There were indications that certain morphological traits correspond to taxonomic groups of dispersers. Diaspores dispersed by birds, mammals or both groups differ in their fruit and seed size, fruit shape and seed number, but not in biochemical composition. Nevertheless, efficient plant-disperser interactions do exist in Sainte Luce without requiring the close co-variation of fruit traits with their dispersers as predicted by the tested models. Consequently food selection, dietary overlap and the ecological role of the different animal species in relation to seed dispersal and predation was studied (Bollen and Van Elsacker 2002; Bollen and Van Elsacker in press; Bollen et al. in press b). Fruit and seed size appear to be the most determining physical traits in food selection of all consumer species. Overall there are few indications for clear food preferences by frugivores, while for the vast majority
of fruit traits, both biochemical and morphological, the frugivores consume whatever is available. This weak selection pressure represents another reason for the lack of strong mutual relationships among fruit traits and dispersers. Dietary overlap among frugivores seems to be rather high in Sainte Luce and may be strongly influenced by phenology. Phenological data show that fruiting is highly seasonal and that lean periods differ substantially inter-annually (Bollen and Donati, submitted). The overall low fruit productivity and high unpredictability of food resources in Sainte Luce may be at the base of low feeding selection pressure and thus relatively high dietary overlap. In Sainte Luce phenophases are highly inter-correlated in time, which means that alternative diet items are not available simultaneously during periods. Even though most fruit species are eaten and dispersed by several frugivores, the different animal species clearly have a distinct impact on seed dispersal. Subsequently fruit traits and feeding ecology of Eulemur fulvus and Cheirogaleus medius were compared between two sites, the dry deciduous forest in Kirindy and the humid littoral forest in Sainte Luce to discriminate between the role of abiotic, biotic and frugivore traits for fruit selection and evolution of fruit traits (Bollen et al. in press c). Both sites differ substantially in abiotic conditions, but contain very similar frugivore communities. The results show that most morphological and biochemical fruit traits differ significantly between sites. These differences can be interpreted as biological adaptations of the fruits against the long dry season in Kirindy. Food selection by both lemur genera in reaction to intra- and inter-specific competition is only a weak selection pressure on fruit traits at a given site. As such, there is a weak selection pressure by frugivores on fruit traits at both study sites. At the same time these frugivores show remarkable regional dietary variation. Thus on a larger geographical scale, the results confirm our previous conclusions that fruit traits are more likely to be the result of abiotic conditions rather than of interactions with their frugivores. I can conclude with a great certainty that, in the littoral forest of Sainte Luce, fleshy-fruited plants engage in diffuse mutualisms with their dispersal agents. These interactions are quite generalized, very ancient and extraordinarily frequent in certain communities. High unpredictability and asymmetry of interactions, coupled with an important influence of abiotic factors, signal that mutual selection pressures between plants and seed dispersers are greatly constrained. In Sainte Luce fruit-eating animals tend to consume many fruit species and likewise the fruits of many plants are consumed by a wide range of animals, possibly to minimize the effects of the loss of one dispersal agent. Abiotic factors seem to be more responsible than biotic ones in shaping fruit characteristics. The long-term dynamics of fruits and their dispersers appear to be decoupled and the diet choice of frugivores shows a remarkable flexibility towards variations in the fruit supply. If frugivore preference had influenced the evolution of fruit traits at all it would most probably have acted upon general characteristics, such as fruit size. Clearly, this shows that abiotic variables and phylogeny are much more important in this ecosystem and thus may outweigh the extent of connections between frugivores and fruits. Pdf file of thesis available upon request.

bollen.an@pandora.be

Résumé: Cette étude concerne les activités intra-groupes et inter-groupes d’Eulemur collaris dans la forêt littorale de Sainte Luce dans le Sud-Est de Madagascar (Fort-Dauphin. Deux groupes de lémurs à collier de tailles différenciées (composés respectivement de 7 à 12 individus) ont été étudiés entre le mois de février et le mois d’avril 2002 et nous avons totalisé 302 heures et 50 minutes d’ observations. Nous avons utilisé la méthode de “focal animal sampling” pour les observations. Pendant cette période, les données relatives aux activités et à l’étendue du domaine vital en fonction de la taille des groupes ont été enregistrées obtenues. Les résultats montrent qu’il y a une différence statistiquement significative entre les activités du petit groupe et celles du grand groupe d’Eulemur collaris. Pour le grand groupe, l’activité “alimentation” prédomine (37,4 %) et il se déplace plus par rapport au petit groupe, alors que pour ce dernier, l’activité “repos” prédomine (45 %). La hauteur comprise entre 4 et 6 m est l’utilisée plus souvent par le petit groupe pendant l’alimentation et le repos et le niveau entre 6 et 8 m pour le grand groupe. Les fréquences de la dimension et de l’orientation des supports au cours des différentes activités sont différentes pour les deux groupes. De même pour les types de postures adoptés par les individus pendant l’alimentation et pendant le repos, sauf les postures au cours du déplacement, lesquelles sont semblables. Les fréquences des activités de nourriture durent également être plus présentes dans le grand groupe et les fréquences de toilettes pour le petit groupe. Ils diffèrent aussi par les distances parcourues journalièrement: la moyenne des déplacements journaliers pour le petit groupe est de 774,18 ± 245 m et celle du grand groupe 1233,57 ± 422 m. Les domaines vitaux de ces deux groupes sont différents: 7,93 ha pour le grand groupe et 7,34 ha pour le petit groupe.

Mots-clés: lémur – Eulemur collaris – activité diurne-taille de groupe – domaine vital – Madagascar

Résumé: Beaucoup d’études sont déjà faites sur l’espèce Lemur catta. Pourtant, les conflits intra et intergroupes ne sont que très peu éucidés. C’est par les échantillonnages focal et scan que nous avons découvert que l’alimentation constitue la principale source de conflits chez Lemur catta: elle est l’origine de 61,63 et de 49,09 % des conflits respectivement dans les groupes CX et D1. La dominance féminelle est démontrée et elle est traduite par une fréquence élevée d’agressivité de la part des femelles, ces dernières mènent 88,88 % des agressions dans le groupe CX et 58,33 % dans le groupe D1. Pendant l’alimentation, certains mâles agressent les femelles subordonnées. Les mâles passent plus de temps que les femelles pour s’alimenter. Les dominantes s’alimentent pendant une durée inférieure au dixième du temps d’observation: il y a alors un paradoxe entre dominance et priorité aux ressources alimentaires des femelles sur les mâles. La majorité des conflits, c’est-à-dire 52,59 % des conflits inter-groupes enregistrés en l’an 2000 sont apparus pendant la siest. De ces conflits, 62,71 % sont localisées dans les zones de chevauchement des territoires des groupes étudiés: ils sont donc d’origine territoriale. Cette étude précise que l’historie personnelle des animaux telle que leurs relations de parenté joue un rôle important dans leurs comportements agressifs car les proches parents s’agressent rarement et avec une intensité faible d’agression. La fission du groupe D1 en 2000 est le résultat des conflits intra-groupes et la rivalité entre les individus de ce groupe continue à se produire: c’est vérifiable par la haute fréquence de conflits entre les 2 groupes concernés. Puisque Lemur catta est grégaire, il est de sa nature d’entrer ne conflit avec les membres de son groupe, cette étude démontre le danger de domestiquer cette espèce.

On their nocturnal foraging trips, grey mouse lemur (Microcebus murinus) roam through the fine-branch niche of the littoral and dry deciduous forests of Madagascar. The characteristics of this niche line the perception of environmental information. On the basis of this perceived information they choose their food items. The optimal choice of food is discussed by the optimal foraging theory, whereas sensory ecology deals with the underlying question, how the animals’ sensory systems are adapted to the specific requirements of their respective prey. The study of the available information animals can perceive depending on the filtering characteristics of their senses. In my thesis I show that wild grey mouse lemur in short-term captivity can recognize and localize fruits on basis of odour in two alternative choice experiments. Living insects are found by passive listening to prey-generated walking sounds, whereas mouse lemur did not respond continuously to unlearned songs of insect rustling sounds. Plastic prey dummies representing visual information only, did not provoke responses unless being moved. However, the mouse lemur chose dead insect prey slightly more often than prey dummies, possibly because of olfactory cues. The presentation of an immobile artificial snake as a visual predator dummy elicited a behavioural response in 60% of the tested mouse lemur. In contrast, they did not respond to the presentation of a prey dummy with other artificial arthropods as controls. However, presentation of the call of the barn owl (Tyto alba), another predator, did not lead to a noticeable change in behaviour. To describe the acoustic information available to the mouse lemur for selecting arthropod prey, I digitally recorded 1500 insect locomotory sounds. The sounds consisted of many “clicks” of different amplitudes and bandwidths, conveying specific information about the insect. The most dominant and also most important acoustic pattern for foraging predators in rustling sounds are the increase in amplitude and bandwidth with mass of the insect. Yet, the absolute values depend on the respective substrate. All three mouse lemur did not learn to discriminate acoustically between big and small insects in a reinforcement training. Yet, they learned very quickly to discriminate between back of higher and lower amplitude, despite the fact that this was not the reinforced cue. Another four experimentally naive mouse lemur preferred in four different acoustic preference experiments each time the (subjectively) louder one of two simultaneously presented stimuli, presumably indicating the bigger insect. As a conclusion I can state, that grey mouse lemur forage multimodally, mainly relying on olfactory information to detect fruit, and a combination of acoustic, visual and possibly olfactory cues to detect and localize insects. Using prey-generated rustling sounds, they are able to evaluate the average mass (as measure for the profitability) of the insect.

Résumé: Deux groupes appartenant à l’espèce Eulemur collaris ont été observés pen, dans trois mois (Février – Mars – Avril) 15 mètres dans la forêt littorale de Fort-Dauphin. Ces études pourraient nous fournir des renseignements plus détaillés sur l'alimentation. Les fréquences de l'activité alimentaire, la catégorie alimen- taire, le niveau adopté et la grandeur des supports utilisés ainsi que la position de l'animal pendant l'alimen-

Résumé: Notre travail contribue à l’étude des lémuriens frugivores dans la dissémination et la régénération des espèces forestières dans la Réserve Spéciale d’Ambohi-
tantly. Pour ce faire, nous avons effectué des observa-
tions de groupes d’Eulemur fulvus fulvus (lémuris diurnes frugivores) durant la saison humide en trois périodes (début de la saison des pluies, en pleine saison des pluies et à la fin de la saison des pluies) pour com-
prendre leurs comportements, les aires exploitées, les espèces végétales dont ils exploitent les fruits et les modes de dissémination. Des tests de germination ont été effectués sur les espèces végétales exploitées pour déter-
mner si l’exploitation des fruits par l’animal a un effet sur le pouvoir germinatif. Nous avons effectué l’inven-
taire de la régénération naturelle de quelques espèces ainsi recensées pour voir leur densité et répartition dans le milieu. Ainsi, nous avons observé un groupe d’Eulemur fulvus fulvus composé de 8 individus. Le groupe dépense beaucoup plus de son temps à des activités de sommeil et de repos, les activités "nourriture" et "déplacement" changent suivant la période d’observation. L’aire exploi-
tée varie de 24 ha en novembre à 19 ha en janvier et elle est supérieure à 25 ha en mars. Le groupe exploite 21 espèces végétales pour les fruits et il dissémine de deux façons: soit par endozoochorie où les graines sortent avec le crottouit et par synzoochorie où il mange le fruits mais rechacre les graines. Sur ces 21 espèces recensées, 18 espèces sont disséminées par endozoochorie, 3 espèces par synzoochorie et une espèce (Olax emirnensis) est détruite. La distance de dissémination dépend du mode de dissémination et de l’étendue de l’aire exploitée; plus l’aire est grande, plus la distance de dissémination est grande. La dissémination par synzoochorie dépasse rare-
ment 15 m en dehors de la couronne des arbres matures origine des fruits exploités, celle par endozoochorie peut aller jusqu’à 730 m en novembre, 510 m en janvier et même plus en mars. Douze espèces végétales avec des
fruits disponibles ont été testées, six espèces ont donné des résultats complets. Le test a montré que l’exploitation des fruits par l’animal peut influencer le pouvoir germinatif des graines de quelques espèces (Astrortrichilia sp., Brexiella illicifolia, Rhus tarantana). Pour l’inventaire de la régénération naturelle, nous avons sélectionné 6 espèces, ces végétaux (Astrortrichilia sp., Brexiella illicifolia, Proteus dittynaena, Rhus tarantana, Rhus thouarsi, et Vepris pilosa). La régénération de ces six espèces se comporte de manière différente pour les 4 types de forêt (forêt ripicole, forêt de haut versant, forêt de plateau et forêt de crête). Ces comportements sont liés à d’autres facteurs comme le tempérament de l’espèce, la présence de prédateur comme Rattus rattus, la concurrence entre les méthodes d’exploitation des faunes et des autruches. Ainsi, le milieu et l’Homme peut disséminer et agir sur le pouvoir germinatif de quelles espèces forestières mais il ne peut intervenir qu’autour de la survie de la régénération.

Ramarokoto R.E.A.F. 2003. Étude comparative des microhabitats de trois espèces de Lémuriens de la forêt littorale de Mandena [Avahi laniger (Gmelin, 1788), Cheirogaleus spp. (Geoffroy, 1812); Microcebus murinus (Miller, 1777)]. Mémoire de DEA d’Anthropologie, Département de Paléontologie et d’Anthropologie Biologique, Faculté des Sciences, Université d’Antananarivo.

Résumé: Les trois mois d’étude (novembre 2000 – janvier 2001) à Fort-Dauphin, pendant la saison chaude, nous ont permis de mettre en évidence le pouvoir adaptatif de trois espèces de lémuriens face à la dégradation de la forêt littorale de Mandena qui appartient au climat humide de l’Est. La densité de chaque espèce ne varie pas du site moyennement dégradé au site très dégradé, ce qui traduit leur potentiel d’adaptation à la dégradation de la forêt. Parmi les espèces, Microcebus murinus est la plus résistante à une densité élevée, vient ensuite Cheirogaleus spp. et enfin Avahi laniger qui semble être rare. Le microhabitat de chaque espèce exige certains paramètres pour pouvoir permettre de survivre dans la forêt plus dégradée. Les grands arbres ont un diamètre d’environ 15cm et une distance par rapport à la plante support de 6m (Avahi), et 10m (Cheirogaleus spp. et Microcebus murinus). Les petits arbres ont un diamètre de 6cm et une distance de 5 m. Les types de rameaux étaient entourant la plante-support s’avèrent abondants (environ 30 dans 4 m²). Les plantes-supports plus appréciées sont Cynometra closei (pour les 3 espèces), Vaccinium emirnense (pour Microcebus murinus), Cerbera manghas (pour Avahi laniger), Dracaena sp. et Syzigium (pour Cheirogaleus spp.). Sur ces plantes-supports, le type de support apprécié et la hauteur adoptée par chaque espèce sont : Support de type “petit” et “vertical” sur une hauteur de 4,5m (Avahi laniger); Support de type “petit” et “horizontal” au niveau de 4m (Cheirogaleus spp.); Support de type “petit” et “vertical” sur une hauteur de 2,5m (Microcebus murinus). Les espèces étudiées peuvent s’accommoder du changement de leur milieu si la pression anthropique est plus ou moins rationnelle: diminution de la forêt dégradé, ce qui traduit un effet de la fragmentation de la forêt sur le comportement de cette espèce. Cette étude fait partie du programme de conservation et de réhabilitation de Madagascar Fauna Group (M.F.G.); cette forêt se trouve dans la Province Autonome de Tomasia et fait partie de la forêt dense humide à feuille sempervirente. Au cours de l’étude, la méthode d’Altmann (1994) a été suivie : échantillonnage par temps d’observation instantanée. Indri indri est diurne et le maximum de ses activités est consacré à la recherche de l’alimentation quotidienne. Cette espèce est typiquement folivore. De plus, Indri indri préfère manger les feuilles situées dans la strate moyenne (5 à 10 m). L’animal a recours aux branches obliques comme support au cours des repas, repos, activités sociales et aux troncs verticaux pour les déplacements. Il utilise souvent le support à diamètre moyen (5 à 10 cm). Ses activités se manifestent à la cinquième parcelle de la canopée. Cet animal vit en groupe dans un territoire défendu qui mesure environ 26,67 ha. Face à la situation actuelle de cette espèce menacée, lui et son habitat ont besoin d’une protection contre l’action de la pression anthropique, c’est-à-dire exercée par l’Homme.

Randriamandratonirina, N.J. 2003. Eco-biologie d’Indri indri, Primate Indriade (Gmelin, 1788) dans la Réserve Naturelle Intégrale de Betampona (Forêt humide orientale de basse altitude), Madagascar. Mémoire de DEA de Sciences Biologiques Appliquées (Option Biologie Animale), Département de Biologie Animale, Faculté des Sciences, Université d’Antananarivo.

Résumé: La présente étude se rapporte à l’écobiologie d’une espèce de Primates – Indri indri – et a été réalisée pendant la période froide et humide de l’année 2002 (juillet à octobre) dans la Réserve naturelle Intégrale de Betampona. L’objectif principal est de connaître l’effet de la fragmentation de la forêt sur le comportement de cette espèce. Cette étude fait partie du programme de conservation et de réhabilitation de Madagascar Fauna Group (M.F.G.); cette forêt se trouve dans la Province Autonome de Tomasia et fait partie de la forêt dense humide à feuille sempervirente. Au cours de l’étude, la méthode d’Altmann (1994) a été suivie : échantillonnage par temps d’observation instantanée. Indri indri est diurne et le maximum de ses activités est consacré à la recherche de l’alimentation quotidienne. Cette espèce est typiquement folivore. De plus, Indri indri préfère manger les feuilles situées dans la strate moyenne (5 à 10 m). L’animal a recours aux branches obliques comme support au cours des repas, repos, activités sociales et aux troncs verticaux pour les déplacements. Il utilise souvent le support à diamètre moyen (5 à 10 cm). Ses activités se manifestent à la cinquième parcelle de la canopée. Cet animal vit en groupe dans un territoire défendu qui mesure environ 26,67 ha. Face à la situation actuelle de cette espèce menacée, lui et son habitat ont besoin d’une protection contre l’action de la pression anthropique, c’est-à-dire exercée par l’Homme.

Razakamanana, L.H. 2003. Contribution à l'étude du rythme d'activités et du régime alimentaire de 3 groupes de Simpona ou *Propithecus diadema edwardsi* dans la forêt de Talatakely, du Parc national de Ranomafana – Fianarantsoa. Mémoire de CAPEN (Certificat d'Aptitude Pédagogique de l'École Normale), Faculté Sciences Naturelles, Ecole Normale Supérieure, Université d'Antananarivo. Résumé: Cette étude a pour objectif de montrer les différences entre les 3 groupes de Simpona de la forêt de Talatakely (Parc National de Ranomafana), Fianarantsoa, au point de vue du rythme d'activités et du régime alimentaire. D'après l'étude du rythme d'activités, les groupes de 4 à 7 individus (grands groupes) sont plus actifs que le groupe composé d'un seul couple adulte et d'un bébé (petit groupe). Le dynamisme du groupe est objectivé par l'importance des activités journalières qui occupent 80,43 % du temps de GIV, 76,05 % du temps de GI et 69,18 % du temps de GIII. En ce qui concerne le régime alimentaire, les groupes diffèrent par la quantité et la qualité des nourritures consommées. Le petit groupe ne mange que 7 à 8 espèces de plantes par jour contre 13 à 16 espèces végétales consommées par les grands groupes. Les Simpona sont hautement folivores; pourtant, pendant notre étude, ils augmentent la consommation de fruits et le petit groupe arrive à modifier son habitude alimentaire en consommant plus de fruits que de feuilles. Malgré la grande différence des régimes alimentaires entre le petit et le grand groupe, nous ne pouvons pas encore affirmer que la taille du groupe est le facteur responsable de cette variation car le régime alimentaire des Simpona semble être lié avec la structure de la forêt où ils vivent et varie avec la saison. En bref, il est nécessaire d'étudier la relation entre la structure de l'Habitat et la taille du groupe à travers les saisons et la connaissance de la dynamique de l'alimentation dans les 3 types d'habitat. Mots-clés: Madagascar – PNR – Talatakely – Faune – Lémurien – 3 groupes – *Propithecus diadema edwardsi* – rythme d'activités – régime alimentaire.
Table of Contents

Editorial .. 1

News and Announcements .. 1

Articles

A preliminary study of mouse lemurs in the Beza Mahafaly Special Reserve, southwest Madagascar .. 4

Emilienne Rasoanzaanabary

Inventaire des Lémuriens dans la partie nord-ouest de Madagascar et distribution d’*Eulemur macaco flavifrons* ... 7

Guy Hermas Randriatahina and Joseph Clément Rabarivola

New discovery of subfossil *Hapalemur simus*, the greater bamboo lemur, in western Madagascar .. 9

Laurie R. Godfrey, Elwyn L. Simons, William L. Jungers, Donald D. DeBlieux and Prithijit S. Chatrath

Confirmation of Aye-Aye (*Daubentonia madagascariensis*) in the Tsingy de Bemaraha National Park .. 11

Léon Pierrot Rahajanirina and Luke Dollar

Research on subfossils in southwestern Madagascar and Ankilitelo Cave ... 12

Illegal rum production threatens health of lemur populations at Tsinjoarivo, eastern central Madagascar: Brief report and request for information .. 16

Mitchell T. Irwin and Hasina Vololina Ravelomanantsoa

Limites de la zone de répartition de *Propithecus diadema diadema* et *Propithecus diadema edwardsi* ... 18

Volasoa Nicole Andriaholinirina, Joseph Clément Rabarivola and Yves Rumpler

Comment et pourquoi les lémuriens diurnes disparaissent peu à peu dans les forêts d’Ambato et de Maromizaha (région de Moramanga) Madagascar ? .. 19

Berthe Rakotosamimanana, Raharizelina R. Ralaizarison, Rosette C. Rasiloamalala, Tovonanahary M. Rasolofoharivelolo, Veromanitra Raharimanantsoa, Rose Marie Randriananarison, Jean Gilbert Rakotonratsimba, David R. W. Rasolofoson, Eric O. Rakotonirainy and Tahirihasina M. Randriamboavonjy

The grandmother of all bamboo lemurs—evidence for the occurrence of *Hapalemur simus* in fragmented rainforest surrounding the Torotorofotsy marshes, Central Eastern Madagascar .. 24

Rainer Dolch, Roland D. Hilgartner, Jean-Noël Ndriamiyary and Herilala Randriamahazo

Note sur les Lémuriens de Sahafiana 26

Felix Rakotondrararany

Contribution à l’étude des populations de *Hapalemur aureus* dans le couloir forestier Ranomafana - Andringitra 28

Daniel Rakotondravony, Lantonirina Razandrazafy, Victoire Razafindramahatra

Influence des effets anthropiques sur la dynamique de population de *Hapalemur griseus alaotrensis* ou "Bandro" dans son habitat naturel 32

Ralainasolo Fidimalala Bruno

MEETINGS .. 35

RECENT PUBLICATIONS

Books .. 36

Journals and Book chapters (without abstracts) 39

Theses completed .. 40

Lemur News Vol. 9, 2004
ISSN 0343-3528